Programme Area: Nuclear **Project:** Natural Hazards Review Title: Annexe to main report documenting hazards in tabluar form ## Abstract: This large spreadsheet contains the details regarding each hazard and associated methodology and how it was assessed in phase 1. This spreadsheet is the repository of detailed knowledge from phase 1. It is included as a print as an appendix to the main report, but it is provided separately in its own right to aid its use and understanding. ## Context: The Natural Hazards Review project will develop a framework and best practice approach to characterise natural hazards and seek to improve methodologies where current approaches are inefficient. This is to improve energy system infrastructure design and the project is intended to share knowledge of natural hazards across sectors. The project will be completed in three stages. Phase one will focus on a gap analysis. Phase two will look at developing a series of improved methodologies from the gaps identified in phase one, and phase three will demonstrate how to apply these methodologies. Finally, phase 3 will develop a "how to" guide for use by project engineers. ## Disclaimer: The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed 'as is' and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that the authors of the document have consented to its publication by the Energy Technologies Institute. | Class | Hazard | Parners with skills | Available Mature Methodologie | Expert judgements on available methodologies, including associated uncertainties, credibility limits | Climate change impacts | Uncertainties on climate change impacts | | | potential conseq | uences and return | level by sectors | | | Existing Guidelines and
regulatory frameworks
impacting the UK | Example of industrial application | trends in R&D | Identified gaps | Prioritisation and justification
why the gaps should be
addressed | |--|--|--|--|--|---|---|--|-------------------------------|--|--|-------------------------------|-------------|---|---|--|---|---|---| | | | Mon MacDonald Met Office Nuclear New Build EDF Nuclear General ion DF Energy R&D UK Center | AIR Worldwide | | | | Nuclear | Hydropower | Transmission & distribution | Insurance | Thermal Generation | Oil and Gas | Renewable | | | | | | | A - Mateorological Hear and | Extreme Rainfall | x x x x x | with Moscale Numerical Weather
Prediction Models [19], (4) Monte
Carlo Approaches [33] | (1) PMP-Mehare methodiobyy, large subjectivity, large uncontainties, usually associated with the 10-4 annual frequency event; (2) EVA: a Shature methodiology, not adapted for) high resolution rainfall, does not use physical know ledge, thuge uncertainties due to the small around of data at the local scale, need to allow for offerent characteristics of site location compared to we eather station location. | 1 IAEA), increase in annual maxima
and decrese in return period [15] | Very uncertain, may change regionally, natural variability males it hard to predict [14], influenced by seasons and North Attartic Seasons and North Attartic Cacillation [15], Not currently enough data to estimate degree of impact data to estimate degree of impact especially regarding frequency | flooding of the diplatform, 10-4 | dam safety due to
flooding | x | All property lines
of business can
be effected by
extreme rainfall
although damage
tends to be
restricted to
ground floors and
basements | flooding of the platform | | | Disaster Scenarios, IAEA**, Planning | Energy, Established Flood Risk
Assessment techniques across NG
fleet, Flood estimation Handbook
used to for roof drainage project for | Stochastic Modelling [34], Weather
type approaches [35] | Very few observation available for high resolution rainfall (15 minutes), available methods not adapted, new RBD needed . | Short duration extreme rainfall estimation are critical in urban hydrology, drainage system design and they can cause flash flood. They cause huge damages. Pluvial flooding can be more damaging than fluvial | | A-Meteorological Hazard | Frazil | x x x | Finite Berrent Analysis; (2) Comptuational Methods for Ice Flow
Simulation (Kallen-Brown, J., 2011 [26]; (3) EVA on low temperature | | Possible increase [17]; Decrease in ice duration and seasonal ice cover [22] | Uncertain due to limited available data [22] | clogging of the
heat sink | × | | | clogging of the
heat sinks | | load on pile for offshoe ind farms | BS 6399. BS EN 50341. Eurocodes. | | | | | | A-Meteorological Hazard A-Meteorological Hazard | Extreme and very rapid changes
in temperature
High extreme ambient air
temperatures | s x x x x | Stationary and non-stationary EVA
for air temperature (4.4 IABA [7]) | unrealistic projections when the
trends detected on the past series | days/nights over most land areas /
warm spells and heat waves (Tab
IV-1 IAEA); Increased average
annual temperature and daily | Impossible to quantify for climate models Virtually certain / very likely. (Tab IV-1 IAEA); Low er confidence in model capability at regional scales (IPCC ARE [13]): 4/5 stars confidence [14] | temperature-
related aging of
infrastructure
cooling is less
efficient as
temperature
increases | | x
temperature
increases could
potentially lead to
more incidences
of de-rating of | | may decrease performaces | × | | National Grid Technical
Specifications, AFI STD 520, 594,
600, 602 AND 607.
EVA for air temperature(4.4 IAEA
[7]), BS 6399, BS 5400, BS EN
50341, BS 61936, BS 7671;
Eurocodes; National Grid Technical
Specifications | EDF NG PSR studies EDF NG PSR studies | Non-stationay EVA, Climate models
scenarios improvement
Non-stationay EVA, Climate models
scenarios improvement | | | | A-Meteorological Hazard | Low extreme ambient air temperatures | x x x x | EVA for air temperature(4.4 IAEA
[7]) | are projected too far in the future | average maximum temperature [14] | Lower conflidence in model capability
at regional scales (PCC ARS [13]);
3/5 stars conflidence due to natural
variation [14] | surge in demand
leading to
overload of
generators and
cable damage,
excessive thermal
contraction of | | arid networks | | | | | EVA for air temperature (4.4 IAEA
[7]): BS 6399, BS 61936, BS 7671
BS 5400, BS IN 50341; Eurocodes ;
National Grid Technical
Specifications | EDF NG PSR studies | | | | | A-Meteorological Hazard | Extreme high water temperature | 9 x x x x | Stationary and non-stationary EVA | trends detected on the past series
are extrapolated to the future
Recent reports cannot confidently for | Projected increase in global mean temperatures [23] Climate change projected to warm | Not regionally uniform [23] Changes in transport currents may | overhead power lines water intake - cooling is less efficient as temperature increase | | | | | | | | Established Flood Flisk Assessment
techniques across NG fleet | | | | | A-Meteorological Hazard | Extreme low water temperature | х х | Stationary EVA with due account of
salinity | f a value for extreme low sea
temperature. Only an upper bound
10-4p.a. value can be provided. | the sea temperature in future (but
cold sea temperatures could still
occur) [12] | result in local cooling even if the
global mean heat content is rising
(IPCC AR5) | frazil ice and
clogging of the
heat sink | | | | | | | Eva for snow pack (4.4 IAEA [7]);
British Standards: RS\$399.3 (now | Nuclear studies for NPP in France
and UK | | A more precise judgement on the
lowest value should be sought | Some uncertainty around | | A-Metoorological Hazard | Extreme snow (including
sticking snow, snow avalanches
icing, hard rime) | , x x x x x | (1) Stationary EVA for snow pack
(4.4 IAEA [7]); (2) Numerical Weath
Prediction Models, (3) eurocodes | Stationary EVA (see comments given for EVA on rainfall) | Climate change projected to warm
the air temperature in future, but
severe cold spells with the risk of
snow could still occur [12] | Insufficient timeseries of data to be able to identify trends rather than natural variability | load on buildings | | ice on power lines
(noticeable
problem in the
U.S.) | all insurable
property lines of
business can be
effected by
extreme snow | × | | load on blame of
offshore wind
farms | British Standards: BS6399-3 (now
w thirdrawn), BS BN 1991-1-3;
Eurocodes, BSI Codes, Models
require validation for use in Solvency
II, National Grid Technical
Specification, BN50341, BS7354, CP
3, ONN Safety Assessment
Dissipation
OW 11.291. British Standards | Met Office, Hazard Safety Cases,
Periodic Safety Reviews, resilience/
defence in depth, and the continual | | Modeling moving towards numerical due to greater computing power; The effect of combined hazard | atmospheric physics and formation
of frozen precipitation; Medium
priority Existing safety cases are
based on the consequences of
failure being tolerable | | A-Mateorological Hazard | Extreme wind | x x x x x | (1) Stationary EVA (Pareto, Webull
(2) Eurocodes; (3) Pobabilistic
Morte-Carlo simulation approach
deriving a stochiastic catalogue of
x
parameters from scientifically
adjusted historical distributions.
Numerical models and climate mode
can also be used | small amount of data at the local
scale, not adapted for short series,
does not use physical knowledge,
up to 10-2; (3) Robust methodology
for characteristics have an | Potentially yes - Warmer oceans are
likely to after tropical cybine
formation. Changes in atmospheric
heating are likely to impact
extratropical cyclone intensity and
tracks, similarly they are likely to
impact severe thunderstown
formation. How ever, there is tow
confidence in projected changes in
storminess, [12], [14]. | Very uncertain; insufficient
timeseries of data to be able to
identify trends rather than natural
variability | load, prolectifes | | winds knocking
over trees which
in turn damages
power line | All insurable
property lines of
business can be
effected by
extreme wind | x | | equipment failure
on wind farms,
50y return period | BS6399-2 (now withdrawn), BS BN
1991-1-4; Engineering Science Data
Unit (BSDU) Wind Engineering Series
guides, BSI Codes, Eurocodes,
National Grid Technical Specification,
EN 50341, BS 61996, BS 7671, EC | Safety Reviews, resilience/ defence
in depth, and the continual
management of the overall
commercial and nuclear safety risk.
EDF NG Commissioned Studies with
Met Office; AIR 400 series | modelling rather than statistical
based modelling due to the increase | The effects of the North Atlantic Oscillation (NAC) and is strength on exteem w Inds. The off ects of climate change on externe w Inds. The off ects of climate change on externe w Inds. Is there a theoretical upper limit to extreme wind speeds due to extreme wind speeds due to extreme price characteristics? Powersigation on the applicability of EVA results, and how to compare them with the equivalent values derived in the Eurocodes | May be included in hazard
contribution: High Priority An under-
essimation of extreme whole (and
hence with operature based to could
undermine nuclear safety cases and
challenge the claimed lines of
protection a.g. in the event of partial
collapse or buildings, loss of
cladding, interaction threats, the
formation of wind-blow n missiles
does not be seen to see the
contribution of the countribution of
wind-blow n missiles
does not seen the countribution of
which we have the countribution of
whence the countribution of
which we have the countribution of
whence the countribution of
which we have the
countribution of
which we have the countribution of
which we have
whence
where the countribution of
which we have
whence
where the countribution of
which we have
whence
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
where
wh | | A-Matsorological Hazard | Tornadoes | x x x x x | (1) Stationary EVA (Parets, Webbull
(2) Linear methods (observations
per area etc. in Med Cfilce reports; or
utilised to extimate frequencies; (5)
TORPO estimation of return period
visit intensity (increasi breveropy)
based determination of the
frequency of occurrence for status
levels of transdic wind-force in
particular nominated zones | (1) Huge uncertainties due to the
small amount of data at the local
scale, not adapted for short series,
does not use physical know ledge, | It is currently not possible to make a
inhis between clampe change and
tomado activity. Climate change may
have a nursher of effects on
atmospheric conditions that may or
may not favour toroxido formation,
the relatively short and unreliable
record of brondo activity makes if
efficient to determine a deline trend
in this. Climate models are currently
unable to resche small-scale
phenomena such as bronadose, and
no models exist which can use
climate model data to predict future. | Very uncertain | load, proiectiles | | х | | | × | equipment failure
on wind farms | OW [1,2,9], TORRO Guidelines, IAEA | Safety Reviews, resilience/ defence | Trend towards using meteorological parameters in addition to statistical techniques, horeasing use of numerical methods for vulnerability analysis. Bg Computational fluid dynamics | Some uncertainty around formation of ternations; the effects of under-reporting, Due to the effects of internation of population between urban and countryside areas. | High Phonty-An under-estimation of
entrems whick (and hence wind
pressure loads) could undermine
nuclear safely cases and challenge
the claimed lines of protection as, in
the owner of partial collages of
buildings, loss of cladding,
interaction threads, the formation of
wind blown missiles atc. | | A-Mateorological Hazard | Lightning | х х х | Estimated annual frequency of
x exceedance (calculating lightning
strike frequency) (4.35 AEA [7]) | Strike intensity is a very uncertain
measure to be used cautiously | Increase in number of lightning days [25] | Uncertainties from modelling (model
convective available potential energy
(CAPE) and use empirical formula to
relate to flash frequency), varies
across regions [25] | × | | x | All insurable | × | × | | exceedance (calculating lightning
strike frequency) (4.35 MEA [7]), BS
6651, BS 62305, BS 61936, BS
7671, BS7354;
IEC 61400, EC 61400, IEC 60079; API
STD 607. API RP 2003 | | | EVA not applied to the existing data | | | A-Meteorological Hazard | Hallstones | х х | (1) Probabilistic Monte-Carlo simulation approach deriving a stochiastic catalogue of parameter from scientifically adjusted historica distributions; (2) Met Office w ork. [16] | swathes for characterizing hazard
over an extended period of time | Potentially yes - due to impacts on
severe thunderstorm formation.
However this is very uncertain and
any projected trands are small, [30]. | | x | | | property lines of
business can be
effected by
hallstones
although damage
tends to be
restricted to more | | | hall can cause
significant
damage if the hall
is of sufficient
size/quantity on
wind farms | Models require validation for use in
Solvency II | AR400 series occupancy coding
using component based damage
functions | | Some uncertainty around
atmospheric physics and formation
of frozen precipitation, Emerging
risks, very little knowledge | Could better quantify size distribution
of hall with better understanding of
physics | | A-Meteorological Hazard | Humidity (including mist and fog) | х х | EVA of extreme wet bulb
temperature available | the wet bulb. Taking the extreme
values from both and assuming that
they could occur at the same time is
not necessarily an appropriate
approach | landmass) | reductions over land are likely [23] | | | | Al insurable | | | | | | | | | | B Marine Hazard | High tide - extreme sea level -
extreme sea flooding- storm
surges | x x x x x | Numerical model - Princeton ocean model, SLOSH, Deltares for the Nor | (1), (2) see comment given for EVA
on rainfalt; (3) Various numerical
models can represent water levels
due to storm surge with good
accuracy. (4) more robust than EVA | IAEA), Sea level rise from melting of
large ice sheets and vertical land
movement (LKCP09 [12]), Since the
storm surge is related to the wind | sea level rise (scenarios H++), Likely
increased incidence (Tab IV-1 MEA),
Hard to predict regional influences
(changes in ocean
circulation/temperature/salinity)
(UKCP09 [12]), impact of sea level | flooding of the
platform, 10-4 | | x | property lines of
business can be
effected by
extreme sea
flooding although
damage tends to
be restricted to
ground floors and
hosepoorte. | | | Impact on
offshore wind
farms, 50y return
period | OW [1,2,9]: Models require validation
for use in Solvency II and Lloyds
synidicates must report exposure in
relation to Pealstic Disaster
Scenarios; United Kingdom Climate
Impacts/Programme, UKCIP, BS PD
8010 | | Storm modelling coupling meteorological and hydrodynamical models; horease in the use of Numerical modelling; Paleodata | Lack of high resolution input terrain data and computational power required to utilise high resolution data. Poor understanding of scouring of foundations and debris effects | Placement, construction and impacts of flood deterrace could be better understood | | | I | | | | | (1) Huge uncertainties due to the
small amount of data at the local | | Very uncertain and linked to the | | | | | impact on | w avps | | | | | |---------------------------------|---|-------|-----|-----|---|--|--|---|---|--|--|---|--|--|--|---|---|--| | B-Marine Hazard | Wind generated waves (long or
short fetch) | х х | х х | ĸ | Stationary EVA; (2) Hydrodinamical modelling using extreme wind as input | scale, not adapted for short series,
does not use physical know ledge,
up to 10-3; (2) Depending on the
methodology used for the wind
Existing number 1990 are can be | Potential impact [11] | wind evolution, very variable across
regions and need long time series to
differentiate between change and
annual variability (UKCP09 [12]) | flooding of the platform, 10-4 | | | x | energy t
oftshore
power, 50
peri | arms,
wind OW [1,2,9], Nuc
return | embedded into safety cases
covered under PSR | - Regional Frequency Analysis
and (Welss, 2015) | | | | B-Marine Hazard | Tsunami | х х | x x | e x | Enhanced TUNAM model used by
AIR Report on threat posed by
tsunam to the UK by DEFRA [18] | very accurate in their prediction of
water levels from tsunami | Yes - rising sea levels will enhance
Tsunami hazard, by increasing the
baseline sea water level | Uncertainties as to magnitude of sea
level rises | flooding of the platform, 10-4 | x | | | x wind pow
return p | Models require validat
Solvency II and Lloyd
must report exposure
Realistic Disaster Scer
594 | s synidcates Department for Environment, | ising Movement towards numerical
ood simulation. Trends for 3D simulation
oor: for detailed site specific analyses;
To
Numerical modelling; Paleodata
by | Very limited validation data available
for infand flows and limited
understanding of the forces on
structures due to flow. Poor
understanding of securing of
foundations and debris effects | Placement, construction and impacts of flood defenses could be better understood | | B-Marine Hazard | Extreme low sea level | х х | х з | ¢ | (1) stationary EVA - Direct Method: | (1), (2) Huge uncertainties due to the
small amount of data at the local
scale, not adapted for short series,
does not use physical know ledge,
up to 10-3, not valid for sites with | | | w ater intake
acces to cooling
water, 10-4 | | | | stability of
for offsho
farn | e wind
s | Studies for NPP along France a
shoreline | | | | | C-Hydrological, Hydrogeological | River flood | x x | x x | e x | (1) EVA. (2) Coupled Global
Circulation Model with Mesoscale
Numerical Weather Prediction Models
[19] Hyrological and run off
generation with fitood routing models
(3) Statistical Stochlastic Simulation
Approach | larce tidal rance (1) Hage uncertainties due to the small amount of data at the local scale, not adapted for short series, does not use physical know kodge, up to 10-3, not valid for sites with large tidal range (2) uncertainties on the parametrization and fink between the hydrological cycle and the admosphere | Yes, climate change could lead to more frequent and intense rainfall events. Soa level rise will affect the low or tidal reaches of rivers making fluvial flooding more likely | Uncertainties on how climate change
will effect rainfail patterns. Very
local effect | | x | All insurable
property lines of
business can be
effected by river
flooding although
damage tends to
be restricted to
ground floors and
basements | x | × | own ats no nucum
Framew ork for as
uncertainty in fluxing
mapping (721); Culver
operation guide (D88
require validation for us
Il and Lloyds synidoate
exposure in relation
Disaster Scenarios; A
Sew RE 76: 78455. | sessing If load risk 1 design and 9); Models e in Solvenoy s must report to Realiste IP STID 810; PST-PSTA. | increasing resolution of digital terral
models and use of low or resolution,
higher extent global models; Use of
paleodata | | Placement, construction and impacts of flood defenses could be better understood | | C-Hydrological, Hydrogeological | Flood due to dam fallure | х х | , | ĸ | Hydraulic modelling of the flood
consequence of a dam breaking | Well assessed modeling. However,
the estimation of the probability of
dambreaking is a uncertain exercise | Possible increase in failure occurences due to increasing in extreme rainfall [29] | Uncertainty from dependence on
projected increases in frequency
and magnitude of extreme
precipitation events [29] | | | | | x | (Framew ork for as
uncertainty in fluvia
mapping (721); Culver
operation guide (0689
12285 | ssessing
I flood risk | | | | | C-Hydrological, Hydrogeological | Draught | x x | х х | ĸ | Stationary EVA | Huge uncertainties due to the small
amount of data at the local scale, not
adapted for short series, does not
use physical knowledge | requestly or extremely dry adminera | Likely (Tab N-1 NEA); 2/5 stars
confidence due to low resolution of
projection models [14]; local and
regional effects
Dependent on climate change | | | | | | | EDF NG Safety Cases and R | SR | | | | C-Hydrological, Hydrogeological | Extreme Groundwater level | × | , | ¢ | hydrogeological modelling | | Potentially yes, due to the potential
increase in extreme rainfall.
How ever the link between extreme
rainfall and extreme ground water
level may be impacted by other
factors. | effects on amount/timing of
precipitation and
humidity/temperature - hard to
account for
topography/vegetation/soil properties
in model (28) | | | | | × | Sewers for adoption; C
610; BSI BS EN | DIFNA; API STD EDF NG Safety Cases and F
12285 | SR | | | | D-Volcanic, Seismic, Geological | Offshore and onshore landslide | × | , | ¢ | coupling landslide and hydrodynamic
models at this continental scales
semms to be very complex and time
consuming for the moment
Regional Ocean Model System | Unpredictable | | in model 1991 | | | | | Potential in
landslic
offshore
fams pile | e on BS PD 801
wind | 0 | | | | | D-Volcanic, Seismic, Geological | Sediment trasport and
Sandbank | × | 3 | ¢ | General Length Scale Approach
(Tidal Asymmetry and Residual
Circulation Over Linear Sandbanks
and their Implication on Sediment
Transport: A Process-Criented
Namerical Sturby | Used separately ROMS and GLSA provide horizontal and vertical movements, respectively. | Potential impact; Projected increase
in sediment yield due to rainfall
amplification through catchment
runoff [31] | Models are still uncertain and don't
account for temporal / spatial /
altitudinal variation [31] | potential clogging
of water intake by
sand | | | | | | | | | | | D-Volcanic, Selsmic, Geological | Geological instability,
sinkholes, liquetaction, land
slippage, etc | × | , | x x | Spatial Distribution Analysis (F/
Gutierrez, A.H. Cooper, K.S.
Johnson, 'Identification, prediction
and mitigation of sinishole hazards in
evaporte karst
areas', 2008) | temporal distribution of sinkholes,
and conditioning factors). Assumes
future subsidence phenomena will
have the same probability and rate
as past activity. Areas of low
activity/no monitoring will not have
the capability to prefet convenees. | Potentially yes, due to changes in
extreme rainfall, there could be
changes in the occurrence of
landslides. Landslides are infact
trigered by extreme or long duration
rainfall, [35]. | | | x x | | | × × | APISTD 594; API | STD 600 | | Lack of liquifaction potential geological maps | Understand locations with
liquifaction potential | | D-Volcanic, Seismic, Geological | Sandstorm (including dust storm
and volcanic action) | × | 3 | ĸ | Probabilistic Seismic Hazard | | | Very dependent on climate change
effects on precipitation, wind, and
temperature, varies by location [27] | blockage of air
filetrs by volcanic
ash, 10-4 | | | | | | | | Lack of UK ground motion prediction | | | D-Volcanic, Selsmic, Geological | Earthquake | x | , | ĸ x | (1) Earthquike catalogue/ factorial
review (2) Selsmis source model
development (3) Ground motion
prediction equations (4) Hazard
calculations. (5) in UK there are
established PSHA techniques used
to derive hazard. (6) Pobabilistic
Monte-Carlo simulation approach
deriving a stochiastic catalogue of
programment from coloriticals. | best practice. A large relance is put
on suitably qualified and experienced
engineers making judgements on
equation calibration and source data,
which could be regarded as to
subjective. Uncertainties are
covered by expert illication and
inherent conservatism in
methodology. Existing stochniques | | | structural integrity | x x | All insurable
property lines of
business can be
effected by
earthquake | x | x <i>x</i> | SSHAC US guidance,
UBC 97, ASCE 4-98
Modele require validati
Solvency II and Lloyds
must report exposure
Realistic Disaster Soc
STD 594, AR ST | BC 2000,
on for use in synificates using component based dan
in relation to functions | improvements to the deterministic methods are being levestigated by European partners, but we ould not be readily transferrable to UK context Use of kinematic modelling to help constraint and of the gutenberg-in-the relationships. Use of next generation attenuation relationships | equations - but due to low seismicity
unlikely to be resolved. Effect of
groundwater changes on existing
fault reactivation?
Lack of historic data for large
earthquakes in the UK and UK | Better understanding of potential range of ground motions for UK sites would be desirable | | E-Bobgical | Marine biological hazard | х х | , | ĸ | adjusted historical distributions [20] (1) EDF NG Prediction and control techniques; (2) Stationary EVA | (1) Complex Physics including
biological behavior, hydrodynamics,
temperature and meteorology, very
site dependent; (2) Huge
uncertainties due to the small amount
of data at the local scale, not
adapted for short series, does not | Potentially yes, changing and increasing of marine species du to the sea w ater temperature increase [12] | Uncertain - ongoing data collation and assessment | water intake
acces to cooling
water | | | | loadon of
x wind fi
struct | rms maintaining cooling wat | rinciples on Studies across EDF NG fleet &
for availability; nuclear nuclear | Development of biological models,
hydrodynamics models, stochastic
models | Lack of systematic understanding;
Jellytish biboming phenomena not
really clear; Effect of climate change
on marine biofouling; Alternatives to
chlorination as suitable biofouling
control? | Emerging risk, very little know ledge | | E-Biological | Animals (including, for example
rodent infestation) | | , | ĸ | | use nhysical knowledne | | | | × | | | | BS 61936; BS | 7671 | | A gap exists to confirm the extreme | | | F-Electromagnetic Hazard | Space weather (including solar
flares, Natural EMP) | х х | × | | Peak over threshold EVA using
(CLIMAX GLM?) provide fluence
rates for return periods up to
10,000 yr r.p. | Huge uncertainties due to the small
amount of data at the local scale, not
adapted for short series, does not
use physical knowledge, up to 10-3 | | | electronic control | Transmission
system, electric
control systems) | | | | | Extreme space weather impa
engineered systems and
infrastructure, Royal Acaden
engineer (2013) | t on
y of | fluence rates and provide a
methodology to assess the
sensitivity of the electronics and/or
BM protection systems against the
fluence rate! | | | F-Bloctromagnetic Hazard | Solar UV | | , | ĸ | , | lamps to provide similar UV exposure
from the sun. Potential impacts listed
to the right may not be directly from | Potentially yes, changes in the UV will depend on several factors including relative humidity (the change of which is extremely uncertain and expected to not change much, except over continential land areas where water | Very Uncertain | | | | | Solar - bri
adhesio
debond
solar p | , and
ng of | | | | | | G-Combinations | Haz ard Combinations | × | x x | r | (1) Amb resources une mouering patition—risk can be quantified for a location or multiple locations across multiple perfix; (2) Geospatial studies—can use shapefiles to represent regions of unmodeled riske e.g. sinkholes, where accumulating locations within these shapefiles aids in the quantification identification of posterial risk. | separate these. To be investigated | is limited? Potentially yes, depending on the single hazards involved | Uncertain | depending on the combination | | | | for offsho
combina
w ave, tic
w ind, (50
return pr
marg | ion of OW sea combination
es and requirements in the UK
years requirement, [4, 5]
riod + requirements, | , [3], WENRA
and IAEA | Numerical modelling | | Lack of robust methodology: Covers
all the range of natural hazard;
Caused dramatic accidents
(Fukushima) | | H-Other | Forest fire | | | × | Probabilistic Monte-Cario simulation
approach deriving a stochastic
catalogue of parameters from
scientifically adjusted historical
distributions | Model meets the wide spectrum of forest fire risk management needs | | Uncertainty from dependence on
projected temperature increases,
variation in other contributing factors
(ex. Relative humidity), and spatial
variation [30] | × | | All insurable
property lines of
business can be
effected by forest
fire | × | | NFPA for Fire Hisk A
Models require validat
Solvency II, API RD520,
API STD 600, API ST
60331, IEC 60332, IEC 6
NFPA standa | ion for use in
API STD 594,
ID 607, EC | | | | | H-Other | Meteorite impact | х х . | x | | (1) Estimates or frequency or
meteorite impact causing Tsumani to
HPC is calculated linearly (area x no
of occurrences); Estimated
average return period for given
meteorite diameter (2) Spacial
Decision Support System
architecture (not very mature
though 10.41 | (2) SDSS is still new and need
improvements, designed for potential
impacts in urbanized areas, w orking
on including submersion w aves from
htting the ocean (tsunami) [24] | | | sea waves
caused by
meteorite impact
causing flooding
of the platform, 10-
7 | | | | | | | | | | ## References - An International Design Standard for Offshore Wind Turbines: IEC 61400-3, 2005. - 2 - ONR, T/AST/013, External Hazard, in Technical assessment guides, 2013. - WENRA, Safety Reference Levels, in Reactor Harmonization Working Group Reports. 2008. - 5 WENRA, Safety of New NPP Designs, in Reactor Harmonization Working Group. 2013. - 6 IAEA, No.SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations, in Specific Safety Guide 2010. - IAEA, No.SSG-18, Meteorological and Hydrological Hazard in site evaluation for Nuclear Installation, 2011, IAEA, - 8 IAEA, No. SSG-21, Volcanic Hazards in Site Evaluation for Nuclear Installations. 2012. - 9 Garrad Hassan GHGL - Burton, I., Robert W. Kates and Gilbert F. White. The Environment as Hazard (New York: Oxford University Press, 1978). 10 - Laugel, A. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French 11 coastlines 2013 - 12 UK Climate Projections 2009, UKCP09 - Intergovernmental Panel on Climate Change. Summary for Policymakers in Climate Change 2013: The Physical Science Basis, 13 - Fifth Assessment Report, IPCC AR5, 2013. - 14 Met Office. Too Hot, Too Cold, Too Wet, Too Dry: Drivers and impacts of seasonal weather in the UK. 2014. - Jones, M., Fowler, H., Kilsby, C., Blenkinsop, S. An assessment of changes in seasonal and annual extreme rainfall in the UK 15 between 1961 and 2009. 2012. - Projected changes in hailstorms during the 21st century over the UK, M, G, Sanderson1.*, W, H, H, International journal of 16 - IPCC report "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation", http://www.ipcc-17 wg2.gov/SREX/) - DEFRA, 2005. The threat posed by tsunami to the UK 18 - http://archive.defra.gov.uk/environment/flooding/documents/risk/tsunami05.pdf - 19 CCSM3.0 Community Atmosphere Model - 20 Mahdyiar et al., 2010 - 21 Peng et al., 2004 - Vaughan, D.G. et al. 2013: Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of 22 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Collins, M. et al. 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The - 23 Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - E. Garbonlino and P. Michel, Proposal of a Spatial Decision Support System architecture to estimate the consequences and costs 24 of small meteorites impacts. 2011, NHESS Journal - Met Office, Future changes in lightning from the UKCP09 ensemble of regional climate model projections (UKCP09 Technical 25 Note) 2010 - J. Brown, B. Smith, and A. Ahmadia. Achieving textbook multigride efficiency for hydrostatic ice sheet flow. Submitted to SIAM J. 26 Sci. Comput. 2011. - 27 Bao Yang et al. Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years. 2007. - 28 G. Ng et al. Probabilistic analysis of the effects of climate change on groundwater recharge. WRR Journal. 2010. - Hossain, F., I. Jeyachandran, and R. Pielke Sr. Dam safety effects due to human alteration of extreme precipitation. 2010. WRR 29 - 30 J. Caesar and N. Golding. Meteorological factors influencing forest fire risk under climate change mitigation. 2011. Met Office. - Coulthard, T. J. et al. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage 31 - basin sediment yield. 2012. HESS Journal 32 - The Flood estimation Handbook - Brigode, P., et al., Linking ENSO and heavy rainfall events over Coastal British Columbia through a weather pattern classification. - 33 Hydrology and Earth System Sciences, 2013. 17(4): p. 1455-1473. - 34 - 35 Caine (1980): "The rainfall intensity – duration control of shallow landslide and debris flows". | PCC terminology on likelihood of | | |----------------------------------|-------------| | occurrence / outcome: (Tab IV-1 | Probability | | IAEA) | | | Virtually certain | >99% | | Extremely likely | > 95% | | Very likely | > 90% | | Likely | > 66% | | More likely than not | > 50% | | About as likely as not | 33-66% | | Less likely than not | < 50% | | Unlikely | < 33% | | Very unlikely | < 10% | | Extremely unlikely | < 5% | | Exceptionally unlikely | < 1% |