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Abstract:
This deliverable describes the results associated with a linear and weakly nonlinear potential flow, hydrodynamic 

formulation, applied to an isolated truncated cylinder (point absorber device type) free to move in all degrees of 

freedom (DOFs). Plus to four cylinders arranged in a square (2x2) array. The review presented in this document is 

mostly focused on the methods available in WAMIT, which was used in this study to compute the first and second-

order hydrodynamic forces and the unrestrained motions associated with a single cylinder and an array with four 

cylinders in regular and irregular waves. 

Context:
The Performance Assessment of Wave and Tidal Array Systems (PerAWaT) project, launched in October 2009 

with £8m of ETI investment. The project delivered validated, commercial software tools capable of significantly 

reducing the levels of uncertainty associated with predicting the energy yield of major wave and tidal stream energy 

arrays.  It also produced information that will help reduce commercial risk of future large scale wave and tidal array 

developments.
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maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not 
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EXECUTIVE SUMMARY 

The present report (WG1 WP1 D8) describes the results associated with a linear and weakly nonlinear 
potential flow hydrodynamic formulation applied to an isolated  truncated cylinder free to move in all 
degrees of freedom (DOFs) and to four cylinders arranged in a square (2x2) array.  

The main aim of this study is to quantify the relative importance of weakly nonlinear hydrodynamic 
effects associated with these floating structures which might occur for steeper incident waves and/or 
when the cylinders undergo large motions, for which the linear hydrodynamic formulation might 
provide an insufficient description. 

The report is organised in eight sections which give a detailed overview of: 

• The scope of the documents and its key objectives – Section 1; 

• A brief introduction to potential flow theory and the difficulties associated with a fully non-
linear implementation – Section 2; 

• A brief description of first order hydrodynamic formulations – Section 3; 

• A detailed description of the second-order (weakly) nonlinear hydrodynamic formulation – 
Section 4; 

• The stochastic approach used to obtain irregular wave results - Section 5. 

• The linear and weakly non-linear hydrodynamic results associated with a single truncated 
cylinder WEC free to move in all DOFs - Section 6; 

• An extension of the linear and weakly nonlinear results to an array with four cylinders 
WEC free to move in all DOFs - Section 7; 

• The next steps in terms of the implementation – Section 8. 

The report starts by providing an overview of potential flow theory by describing the assumptions and 
difficulties associated with a mathematical fully non-linear formulation (Section 2).  

All potential flow theories consider the fluid to be incompressible, inviscid and with no surface 
tension. The condition of irrotational flow allows the use of the Laplace equation, that should be 
satisfied in all fluid domain and a set of boundary conditions must also be satisfied at the fluid-air (i.e. 
free-surface) and fluid-solid (i.e. seabed and wet surface of the body) interfaces. The major difficulty 
associated with the complete (fully nonlinear) solution of the problem is associated with the nonlinear 
free-surface boundary condition which is mathematically difficult to solve and the instantaneous 
continuous change of the wetted profile due to the large motions requiring the generation and solution 
of a new system of equations at each time step, since the free-surface changes and the body surface 
moves to a new position. 

The fully nonlinear approach is thus difficult and computationally intensive and as such a more 
common approach is to solve the hydrodynamic problem using approximations to the fully nonlinear 
equations i.e. first-order (or linear) and second-order (or weakly nonlinear) by assuming small 
amplitudes for the incident waves and small motions for the floating structure.  

The linear approximation of the potential flow problem is described in Section 3, whereas the second-
order approximation is described in detail in Section 4. The linear hydrodynamic problem is widely 
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known and well understood in the context applied to WECs (see Sections 3.2 and 3.3 of WG1 WP1 
D1b) (Falnes 2002, Evans and Linton 1993, Evans 1981). However, this is not the case for the second-
order formulation for which very few studies are applied to WECs.  

The general solution of the second-order hydrodynamic problem takes into account weakly non-linear 
interactions between the fluid and the floating structure. The magnitude of these interactions is 
normally of second-order and occurs at frequencies away from that of the ambient waves and which 
result from dual combinations of all components in the incident wave group. The second order 
excitation forces are thus expressed as a function at the sum and difference frequency of the 
components of the incident wave group through the quadratic force transfer functions known as QTFs. 
As in the linear case, these QTFs depend on the wetted profile of the floating structure and are 
investigated in detail for the single truncated cylinder and for the square array. 

The review presented in this document is mostly focused on the methods available in WAMIT, which 
was used in this study to compute the first and second-order hydrodynamic forces and the unrestrained 
motions associated with a single cylinder and an array with four cylinders in regular and irregular 
waves. These are no foreseeable differences between the use of this particular software package and 
other equivalents packages, i.e. the methodology and key findings in this report should be considered 
representative of a generic second-order solution.  

The results found show that for the single truncated cylinder the second-order excitation force 
components associated with most regular waves are much smaller than the first-order excitation force 
component in surge and pitch. In heave and for wave periods close to resonance a peak in the second-
order components is found. Away from resonance, the unrestrained motions are small and dominated 
by the first-order component for all modes of motion.  

The excitation forces and unrestrained motions were computed for a Pierson-Moskowitz spectrum 
with significant wave height of 2.5m (and Tp=7.9s) and it was found that the first-order component of 
the excitation force is dominant for both surge and pitch modes. In heave, the second-order component 
has higher values with a significant contribution made to the total excitation force. The unrestrained 
motions were small with the first-order component being dominant for heave and pitch. In surge, the 
slowly varying drift motion was observed. 

For the array with four cylinders an increase of the peak values associated with the sum-frequency 
force quadratic transfer functions (QTF) component was found mostly due to the array interactions. A 
sharp increase in the value of the absolute value of the sum-frequency force QTF was obtained for 
wave periods close to 7.5s for all modes of motion except heave. An increase in the second-order 
excitation force component in surge and heave for the front cylinder (1) in the array was found in 
comparison with isolated cylinder. The unrestrained motions of the cylinders in the array are 
dominated by the 1st order component, except for surge and sway where the slowly varying drift 
motion associated with the difference frequency component is observed. 
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1 INTRODUCTION 
1.1 Scope of this document 

This document describes the implementation of a weakly, second-order nonlinear model of floating 
wave energy converters (WECs) of the point-absorber type that allows a first assessment of the 
influence of nonlinear wave loads on the WEC response. 

The document is divided in seven main sections. An overview of potential flow hydrodynamic theory 
is given in Section 2. The methodologies associated with the first and second-order formulations are 
given in Sections 3 and 4, and the stochastic approach used to obtain irregular wave results is detailed 
in Section 5. The report is concluded with the comparisons between the first and second-order 
simulations for a single WEC (Section 6), and an array of four WECs (Section 7). 

Section 2 provides a brief introduction to potential flow theory and describes the assumptions and 
difficulties associated with the mathematical formulation. The fluid is considered as incompressible, 
inviscid and with no surface tension. The condition of irrotational flow allows the use of the Laplace 
equation, that should be satisfied in all fluid domain. A set of boundary conditions must also be 
satisfied at the fluid-air (i.e. free-surface) and fluid-solid (i.e. seabed and wet surface of the body) 
interfaces. A major difficulty associated with the complete (fully nonlinear) solution of the problem is 
associated with the nonlinear free-surface boundary condition which is mathematically difficult to 
solve. The hydrodynamic forces and moments are obtained through the integration of the pressure 
exerted by the fluid on the wetted profile of the floating structure, which is in turn derived from the 
velocity potential of the fluid via the Bernoulli equation. The dynamic equations of motion of the 
floating structure are obtained by equating the inertial forces to the applied forces which include the 
hydrodynamic forces, PTO force and mooring forces. However in the fully nonlinear case the 
hydrodynamic forces are accounted over the instantaneous wetted profile which is coupled to the 
motion of the floating structure. Most of methods developed to solve this complete set of nonlinear 
equations use a Mixed Eulerian-Lagrangian (MEL) time stepping technique for which the fully 
nonlinear boundary conditions are satisfied over the instantaneous free-surface and body surfaces. The 
unknowns of the linear equations which result from the discretisation of the geometry are distributed 
on the boundary of the whole computational domain and a new system of equations is generated and 
solved at each time step, since the free-surface changes and the body surface moves to a new position. 

The fully nonlinear approach is thus difficult and computationally intensive and as such a more 
common approach is to solve the hydrodynamic problem taking into account approximations of the 
nonlinear equations to a first-order (or linear) and second-order (or weakly nonlinear) assuming small 
amplitudes for the incident waves and small motions for the floating structure.  

The linear approximation of the potential flow problem is described in Section 3, whereas the second-
order approximation is described in detail in Section 4. The linear hydrodynamic problem is widely 
known and well understood in the context applied to WECs (see Sections 3.2 and 3.3 of WG1 WP1 
D1b) (Falnes 2002, Evans and Linton 1993, Evans 1981). However, this is not the case for the second-
order formulation which is mostly applied to other offshore structures. The second-order problem 
requires a solution for the hydrodynamic interactions between the fluid and the floating structure at the 
sum and difference of the frequency of the incident waves. The magnitude of these interactions is 
normally of second-order and occurs at frequencies away from that of the ambient wave. However, as 
in the linear case, these depend on the wet surface of the floating structure and should be investigated 
in detail. Typical examples of second-order problems are sub-harmonic resonance of moored 
structures and the super-harmonic resonance of tension-leg-platforms.  
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The review presented in this document is mostly focused on the methods available in WAMIT, which 
was used in this study to compute the first and second-order hydrodynamic forces and the unrestrained 
motions associated with a single cylinder and an array with four cylinders in regular and irregular 
waves. There are no foreseeable differences between the use of this particular software package and 
other equivalents packages, i.e. the methodology and key findings in this report should be considered 
representative of generic second-order solutions.  

 

1.2 Purpose of weakly nonlinear hydrodynamic simulations 

The key objectives of this exercise are: 

• to provide a potentially more accurate solution of the hydrodynamic problem, at the expense 
of computational effort; 

• to compare such solution with other formulations, namely the first-order (linear) and fully 
nonlinear methodologies; 

• to, if proven necessary, create the baseline procedure to use nonlinear excitation forces as 
input into the software tool(s) developed under PerAWaT. 

 

1.3 Specific tasks associated with WG1 WP1 D8 

The computation of the first and second-order hydrodynamic quantities was performed using WAMIT 
(V61s). GH in-house software was then used, using the nondimensional WAMIT data, to couple the 
obtained values with six different wave inputs (three regular, three irregular).  

Further comparisons were made between the first and second-order solutions. These are directly 
relevant for WG1 WP1 D9. 

 

1.4 WG1 WP1 D8 acceptance criteria 

The acceptance criteria as listed in the Technology Contract and the sections of this report that 
demonstrate that they have been met are: 

1. Results will be calculated and presented for a second-order hydrodynamic response of single 
uncontrolled axisymmetric device in regular waves, responding in multiple degrees of 
freedom. In so far as it is possible prior to validation, findings will be discussed and 
applications and limitations of this approach will be described, including any lesson learned 
on methodology. – Section 6. 

2. Note that in preparation of the WG1 WP1 D9 activities, which follow a fully nonlinear 
hydrodynamics formulation, second-order results for an array of WECs are also presented in 
this report (exceeding the acceptance criteria).   
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2 BRIEF INTRODUCTION TO POTENTIAL FLOW HYDRODYNAMICS 

In potential flow theory the fluid is considered to be incompressible, inviscid and surface tension 
effects are neglected. The flow is irrotational and so the velocity of the fluid ( ) at a certain point 

in a Cartesian coordinate system (fixed in space) and time instant (t) is given by: 

 . (1) 

The total velocity potential ( ) satisfies the Laplace equation in all of the fluid domain: 

 , (2) 

and also the boundary conditions at the air-fluid and solid-fluid interfaces that define the problem, i.e. 
the free-surface, the seabed and the floating structure, respectively. The complete formulation of these 
boundary conditions is in general difficult to solve and first or second-order approximations are 
typically used to define the respective hydrodynamic formulation. These are also referred to in the 
literature as the linear and weakly nonlinear formulations. The first and second-order approximations 
are detailed in Sections 3 and 4, respectively.  

 

2.1 Boundary conditions 

The complete boundary conditions are in general difficult to solve due to the strong nonlinearities 
involved. At the free-surface interface two boundary conditions can be defined. One known as 
dynamic is required to ensure that the pressure is the same at the air-fluid interface. This condition is 
derived from the Bernoulli equation and is expressed mathematically as: 

 , (3) 

where g is the modulus of the acceleration of gravity. 

The other boundary condition, known as the kinematic condition expresses that the particles at the 
water-air interface stay within this boundary. Representing the wave elevation by η, this boundary 
condition can be expressed mathematically as: 

 (on x3=0). (4) 

The above Equations (3) and (4) can be combined into a single expression for the free-surface 
boundary condition which is given by: 

 (on x3=0). (5) 

At all solid boundaries, the normal velocities of the fluid and solid are required to be the same. For 
bodies in motion this condition is given by: 

 , (6) 
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where is the normal to the body surface.  

On fixed structures, at the seabed or walls, the velocity is zero ( ) and an impermeability 
condition applies: 

 (7) 

To ensure that at distances far away from the fluid domain (i.e. at infinity) the waves are outgoing with 
a proper amplitude behaviour, a far-field radiation condition (Sommerfeld) is imposed such that: 

 (8) 

in which and k the wavenumber. 

A time-domain simulation would also require the definition of initial conditions. These normally 
assume that that the body is at rest and velocity potential is null prior to the simulation time (t<0).  

 

2.2 Hydrodynamic forces 

The hydrodynamic forces and moments which result from the interaction of the fluid with a floating 
structure are obtained through the integration of the fluid pressure (p) over the instantaneous wetted 
profile of the structure as: 

 , (9) 

 

. (10) 

The fluid pressure in these integrals is obtained in terms of velocity potential through the Bernoulli 
equation: 

 . (11) 

The integration in Equations (9) and (10) is over the instantaneous wetted profile which changes as the 
structure moves in the fluid. The coupling between the body motion and the instantaneous change of 
the wetted profile carry mathematical difficulties which are difficult to solve. 

The first and second-order approaches overcome this difficulty by approximating the above integrals 
to an integral over the mean wetted profile of the floating structure at the respective order. The main 
differences between these approaches are described in Sections 3 and 4 respectively. 
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2.3 Equations of motion 

To conclude this brief introduction to potential flow hydrodynamics, the kinematic equations 
associated with the motion of a rigid body immersed in a fluid are presented.  

A global coordinate system (GCS) located in an inertial Cartesian frame of reference is defined and 
assumed to be right-handed with the third component pointing upwards and its origin located at the 
mean water free-surface. 

A second coordinate system which moves with the body and has its axis coincident with the GCS 
when the body is in an undisturbed position is referred to as the Body Fixed Coordinate System 
(BCS). 

To distinguish between the quantities represented in the inertial frame of reference from those in the 
body-fixed coordinate system (BCS) a tilde is associated with the latter (see Figure 1). 

Figure 1: Global and body-fixed coordinate systems 

 

The position vectors in the GCS and BCS are related by the linear transformation: 

 , (12) 

with: 

 . (13) 

The vectors and in Equations (12) and (13) represent the 
translational and rotational displacements of the BCS relatively to the GCS. This is equivalent to say 
that these vectors represent the surge, sway, heave, roll, pitch and yaw motions, respectively. 

The velocity associated with a generic point (P) in the inertial frame of reference is given by: 

 , (14) 
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where is the velocity of the origin of the BCS, its angular velocity and the position of 
the same point P described in the body fixed coordinate system. The acceleration is given by: 

 . (15) 

For a single rigid body the equations of motion can be conveniently expressed in a Newton-Euler 
formulation as a system of six equations in which three describe the translations and three describe the 
rotations. This approach retains the physical meaning of each term in the equations, which in an 
inertial frame of reference can be related to: 

 ; (16) 

 

. (17) 

 

In an inertial frame of reference, the variation of linear momentum ( ) is proportional to the 
acceleration of the centre of mass ( ) and equal to the external forces applied to the system ( ). The 
variation of the angular momentum ( ) relative to any pivot point is equal to the external applied 
torque ( ) about the same point. In this approach, the constraint forces must be included in the 
equations of motion and are obtained as part of the solution. 

The angular momentum in the body coordinate system can be written as: and Equation (17) 
can be rewritten as: 

 . (18) 

In the present study the only applied forces and moment considered are hydrodynamic and so 
and Also only unrestrained motions are considered and so there are applied force to such as 
the power take-off (PTO) or mooring force to take into account. 

The major difficulty associated with a fully nonlinear potential flow formulation is related to the 
solution of the nonlinear free-surface boundary conditions which has to be satisfied over the 
instantaneous free-surface which is unknown a priori. Most of methods developed use a Mixed 
Eulerian-Lagrangian (MEL) time stepping technique for which the fully nonlinear boundary 
conditions are satisfied over the instantaneous free-surface and body surfaces. The unknowns of the 
linear equations which result from the discretisation of the geometry are distributed on the boundary of 
the entire computational domain and a new system of equations is generated and solved at each time 
step, since the free-surface change and the body surface move to new positions. An advantage of 
second-order method described in Section 4 when compared with the fully nonlinear formulation is 
that through the approximations involved (and at the potential expense of accuracy) the linear system 
of equations to solve remains the same throughout the simulations (reducing the computational 
burden). 
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3 FIRST-ORDER APPROXIMATION  

Linear potential flow theory is used in a variety of offshore engineering problems. This section gives a 
very brief overview of its fundamental aspects. For more detailed descriptions, see e.g. Newman 
(1977), Sarpkaya and Isacson (1989), Faltisen (1990) and Falnes (2002). 

This theory considers, in addition to the potential flow assumptions described in Section 2, that the 
amplitudes of both the incident waves and of the motions of the floating structure are small when 
compared with the incident wavelength. 

The total velocity potential is assumed to have an harmonic time dependency ( ) and 
to satisfy the Laplace equation throughout the fluid domain (as per Equation (2)). The boundary 
conditions are linearised and simplified accordingly. 

 

3.1 Boundary conditions  

In the first-order approach the inherent mathematical and numerical difficulties associated with the 
evaluation of the square of the velocities in Equations (3), (5) and (11) are avoided. 

The dynamic and kinematic boundary conditions at the free-surface interface – see Equations (3) and 
(4) – are simplified in the first-order formulation to: 

 , on x3 =0; (19) 

 , on x3 =0, (20) 

where � is the complex amplitude of the harmonic velocity potential.  

These two equations can be combined to express the free-surface boundary condition associated with 
Equation (5) which is simplified in the first-order formulation to: 

 , on x3 =0. (21) 

The kinematic boundary condition is given by Equation (6) takes into account the first-order 
approximation of the body motions and is given by: 

 . (22) 

Note that un is the normal component of the velocity at a surface element of the body which by  
assuming harmonic displacements is conveniently defined as a six dimensional generalised vector with 
components given by:  
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3.2 Hydrodynamic forces  

The hydrodynamic forces and moments are obtained through the integration of the pressure over the 
wetted profile of the body as given by Equations (9) and (10), with the pressure being given by the 
first-order approximation of the Bernoulli equation: 

 . (23) 

The second term in Equation (23) is associated with the hydrostatic forces and moments. The 
hydrostatic force is given by: 

 . (24) 

Under the first-order approximation, the integral over the instantaneous wetted profile in Equation (24) 
is approximated to a static integral over the mean wetted profile. By assuming small motions the 
integral in Equation (24) is evaluated in terms of the body-fixed coordinates and by using Stokes 
theorem converted to a volume integral. 

The instantaneous volume is then decomposed into a static volume beneath the still water plane and a 
thin layer bounded by the planes between the body-fixed and inertial coordinate systems.  

The linear hydrostatic force and moment are proportional to the displacements, represented in matrix 
form as: 

 , (25) 

where C is a matrix with the hydrostatic coefficients which are a function of water plane areas, 
moments and centres of buoyancy of the structure. 

To compute in Equation (23), and under the previously described assumptions, it is possible to 
decouple the problem and consider two distinct contributions associated with the interactions between 
the floating structure and the incoming wave field, respectively. 

These separate contributions are commonly referred to as the solutions of the diffraction and of the 
radiation problems, and correspond respectively to: 1) the study of the interactions of the incident 
waves with the body held fixed and 2) the study of the interactions due to forced motions of the body 
in calm water.  

Under the above assumption, can be given by: 

 , (26) 

where the indices I, D and R refer to the incident, diffracted and radiated velocity potentials, 
respectively. Note that the sum of the I and D components is often referred to as the excitation 
potential. 

The velocity potential ( ) due to a regular incident wave of frequency ω is computed by solving the 
Laplace equation in the absence of the structure, resulting in: 
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, (27) 

with k being the wavenumber ( ), which satisfies the dispersion relation: 

 . (28) 

The first-order approximation assumes that the motions of the floating structure are sufficiently small 
so that the radiated potential ( ) is proportionally small (Newman, 1970) and given by: 

 (29) 

The force and moment due to the radiated waves are obtained by substituting Equation (29) into the 
linearised Bernoulli equation (Equations (23)) and into the hydrodynamic pressure integral (Equations 
(9) and (10)). The radiation force is given by: 

 (30) 

The matrices A and B represent the added-mass and radiation damping coefficients (respectively) and 
these depend on the wetted profile of the body, the period of the incident wave and the water depth. 

The excitation (or scattered) potential is given by . In a first-order approximation this is 
proportional to the amplitude of the incident wave (a): 

 . (31) 

Substituting Equation (31) into Equations (23), (9) and (10), the excitation force (and moments) are 
given by: 

 (32) 

where is the complex amplitude vector of the excitation force or moment with their respective 
components: 

 (33) 

The computation of the hydrodynamic forces and moments is thus reduced to the computation of the 
velocity potential and the surface integrals in Equations (33) and (30). 
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3.3 Velocity potential  

The outline of the method used in the potential flow solver used in this study (WAMIT) to compute 
the velocity potential is detailed in e.g. Newman and Sclavounos (1988). It is based on the solution of 
integral equations computed on the wetted profile of the body by applying the Green theorem to 
source potentials defined by Green functions (G). 

These integral equations are solved for the velocity potentials of the radiation and diffraction problems 
associated with Equation (26). The velocity potential due to the radiation problem is computed by 
solving: 

 , (34) 

and the diffraction potential is obtained by solving: 

 , (35) 

in which the source potential or Green function for infinite water depth1 in the surface of the floating 
body is given by: 

 , (36) 

with:  

 ;

,

where is the position of the source of constant strength and the Bessel 
function of zero order. The irregular frequencies are removed from the velocity potential by extending 
the boundary integral equations (WAMIT2006). 

The numerical solutions of the above integral equations require the wetted profile of the floating 
structure to be discretised. A low-order method was originally developed to describe the wetted profile 
using flat panels assuming in each a constant velocity potential and velocity normal at its centre. 
Higher-order methods have since been devised that allow a continuous representation of the velocity 
potential through functions which normally are polynomials of order higher than two. WAMIT uses 
B-spline functions to represent the velocity potential as a continuous function over the wetted profile 

 
1 For finite water depth the source potential assumes a different expression as given for example by Wehausen and Laiton 
(1960). 
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of the body. These are parameterised, smooth and continuous functions defined piecewise through a 
set of control points and base polynomials which are defined recursively and represent complex curves 
in an efficient way. The higher-order method (when compared with the lower-order with a comparable 
discretisation) achieves in general a faster convergence and higher accuracy (Lee et. al. 1996, 1998). 
Previous applications of both methods to WEC modelling have been presented in Section 3.2 of WG1 
WP1 D1b. 

 

3.4 Equations of motion 

The linearisation of Equation (17) implies that and the inertia matrix is included into a mass 
matrix as explained in Newman (1977). Assuming that the only forces and moments in the system are 
the hydrodynamic components and substituting these into the equations of motion, a linear system of 
six equations is obtained, leading to: 

 (37) 

where M is the (6x6) mass matrix, A, B and C are the added mass, radiation damping and hydrostatic 
stiffness (6x6) matrices respectively; the  complex amplitude vector (6 component) of the body 
displacements; the complex amplitude of the hydrodynamic excitation forces and moments; and a
the amplitude of the incident waves. 

The ratio is the complex amplitude of motion in response to an incident wave. This quantity is a 
transfer function of the linear system and commonly known as the response amplitude operator or 
RAO. 
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4 SECOND-ORDER APPROXIMATION  

Second-order, weakly nonlinear hydrodynamic theory assumes, as in the first-order case (Section 3), 
small amplitudes for the incident waves and motions in comparison with the wavelength of the 
incident wave. However, this theory takes into account a more detailed representation of the velocity 
potential ( ) and all derived variables by considering a second-order approximation through a Taylor 
expansion series about the mean positions. 

The total velocity potential is given by a perturbation series in the parameter as: 

 (38) 

in which is a small quantity related to the wave-slope. For a regular wave this parameter is given by 
with k satisfying the dispersion relation given by .2

To generalise the second-order theory to wave-body interactions with irregular incident waves, it is 
sufficient to consider the general problem of the interaction of the structure with an arbitrary bi-
chromatic pair of incident wave components (Kim, 1990). 

In the presence of two plane incident waves with frequencies ω1 and ω2, the first-order velocity 
potential (bi-chromatic) is given by: 

 (39) 

whereas the second-order potential is written in terms of the superposition of the sum and difference 
frequency terms: 

 (40) 

where are the sum (+) and difference (-) frequency potentials at the sum and difference 
frequencies: and , respectively. The functions satisfy the 
symmetry relations: and (where the (*) refers to the complex conjugate). 

To simplify the description of the problem, Equation (40) assumes that the waves are directly incident 
upon the floating structure. If a directional spreading of the incident waves is to be considered, the 

 
2 In deep-water the maximum wave steepness achieved by a non-breaking wave is approximately equal to 

. Thus at the wave breaking limit, which is at least one order of 
magnitude higher than the hypothesis used in Equation (38). To have it is required that the wave steepness to be at 
least  .
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sum and difference velocity potential ( ) should be represented instead by a double summation 
over the wave headings .

Note that (composed of the first and second-order approximations) should satisfy the Laplace 
equation given by Equation (2) and the boundary conditions set out by Equations (5), (6), (7) and (8) 
under the second-order approximation (see Section 4.1). 

 

4.1 Boundary conditions 

The expansion in terms of Taylor series of the free-surface elevation and body motions as in Equation 
(38) allows the boundary value problem at each order to be considered independently and the velocity 
potential to be decomposed in terms of the incident ( ), diffracted ( ) and radiation ( ) potentials: 

 (41) 

The first-order problem and the methods to compute the first-order potentials were described in 
Section 3. At second-order a similar decomposition of the velocity potential is performed. The second-
order excitation potential collects all the terms associated with the second-order 
influence of the incident and diffracted waves and the forcing of all quadratic contributions of the first-
order quantities. The second-order radiation potential ( ) collects all the contributions of outgoing 
waves due to second-order motions in the absence of ambient waves or first-order disturbances. 

It should be noted that the described decomposition is not unique. It is however advantageous as all 
the ‘difficult’ second-order effects are confined to the diffraction problem whereas the second-order 
radiation problem is identical to the first-order but at the respective sum and difference frequencies. 

The knowledge of the first-order potentials is necessary to specify the forcing terms of the 
inhomogeneous free-surface (QF) and body boundary conditions (QB) associated with the second-order 
problem.  

The inhomogeneous free-surface condition for the total second-order potential is given by:  

 , (42) 

with the quadratic forcing function (QF) evaluated at the mean free-surface x3 = 0 and given by: 

 . (43) 

The body boundary condition is evaluated at the mean body boundary and is expressed by: 

 , (44) 

with the forcing function on the body boundary given by: 
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. (45) 

The matrix H in Equation (45) results from the second-order approximation of the transformation 
between the body fixed coordinate system and corresponds to:  

 , (46) 

where in the above equations and are associated with the translational and angular displacements 
between the body fixed coordinate system and the inertial coordinate system. 

 

4.2 Velocity potential 

To simplify the description the incident wave is assumed to be unidirectional and the water depth (z0)
uniform. The first-order incident potential ( ) satisfies the Laplace equation and the boundary 
conditions as described in Section 3, but is given here for a bi-chromatic wave3 at frequencies ω1 and 
ω2 while satisfying the dispersion relation:  

 . (47) 

The second-order incident potential ( ) satisfies the Laplace equation ( ), the non-porous 

bottom condition at the seabed ( ) and the nonlinear free-surface condition given 

by Equation (42). 

The sum and difference frequency second-order incident wave potentials and are obtained by 
taking into account Equation (40) and substituting Equations (39) and (47) into Equation (42), 
resulting in: 

 , (48) 

 

3 Note that in the limit of a single regular wave , and the bi-chromatic wave reduces to the 
second-order uniform stokes wave.  
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, (49) 

with satisfying the dispersion  relation and the 
functions given by: 

 ; (50) 

 

. (51) 

The forcing functions QF and QB given by Equations (43) and (45) are then described in terms of the 
sum and difference frequencies by (see Lee, 1995): 

 ; (52) 

 

; (53) 

and: 

 ; (54) 

 

; (55) 

with: 

 ; (56) 

 

. (57) 
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Note that in the above expressions the symmetry relations and apply. 

In Equations (54) and (55) the sum and difference components of the last term of Equation (45) were 
omitted since they are not a quadratic function of the first-order solution. These are proportional to the 
second-order motions and can be treated separately from the rest of body forcing. 

The second-order potential ( ) in Equations (42) and (44) is decomposed into three components in 
the sum and difference frequencies associated with the incident, diffracted and radiation as: 

 . (58) 

The radiation potential describes the disturbance associated with the second-order motions of the 
floating structure. Assuming an incident wave with small amplitude, at second-order the motions are 
proportionally small and the radiation potential in the sum and difference frequencies is given by: 

 . (59) 

4.3 Scattering potential: boundary-integral equation for the sum and difference frequency 
second-order potentials 

Panel methods can be used to solve the second-order velocity potential. The integral equation method 
is extended to second-order and includes the forcing terms ( and ) given as first-order 
quantities:  

 (60) 

The excitation (or scattering) potential ( ) is obtained as a solution of the Green integral equation 
and the same equation with 2π substituted by 4π gives the solution for ( ) in the fluid domain.  

The left-hand side of Equation (60) is identical to the integral equation for the first-order potential and 
is solved with the methods developed for the computation of the first-order velocity potential.  

The forcing terms in Equation (60) which corresponds to the right-hand side integrals are calculated in 
a piecewise manner by using flat panels as in the low-order method. 

The first integral of the right hand-side of Equation (60) is evaluated over the wetted profile of the 
body (SB) by numerical methods described in detail in Lee (1991; 1993). The second integral of the 
right hand-side of Equation (60) is evaluated over the free-surface which is discretised into 
quadrilateral flat panels and evaluated separately into two separate domains. A partition circle (of 
radius ) is defined such to enclose the body and its local disturbance and that the effect of the 
evanescent waves outside the circle can be neglected. To reduce the computational burden, the inner 
region is further subdivided into two or more parts separated with a circle of radius 

which is large enough to enclose the body surface. For the region close to the 
body ( ), the integration is carried out by numerical quadratures at each panel centre whereas in 
the annular region between and away from the body a more efficient procedure 
integration is used (Gauss-Chebychev quadrature in the azimuthal direction and Gauss-Legendre 
quadrature in the radial direction). 
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4.4 Hydrodynamic forces 

At second-order, the fluid pressure given by the Bernoulli Equation (11) is fully taken into account. 

However, the hydrodynamic forces and moments - Equations (9) and (10) - which result from the 
integration of the pressure over the instantaneous wet surface are approximated to second-order and 
the integral is taken instead over the mean wetted profile SB.

By collecting the first and second-order quantities at each order, the second-order forces or moments 
due to the second-order incident and diffracted wave potential are given respectively by: 

 (61) 

and: 

 (62) 

The sum of these two quantities is defined as the second-order potential force and moment: 

 (63) 

 
The components of the hydrodynamic forces and moments associated to the quadractic products of 
first-order quantities are known as the quadratic second-order forces and moments. These are given 
by: 

 , (64) 

and: 

 (65) 
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In the above equations the first-order relative wave height is defined as 
and vector . The water plane area is Aw and the water plane moments are given 
by: . The second-order wave excitation force and moments are defined as the 
sum of the second-order potential force and moments with the quadratic second-order force and 
moments: 

 (66) 

 

In the presence of bi-chromatic waves the second-order wave excitation force can be expressed at the 
sum and difference frequencies by (Kim, 1990): 

 , (67) 

where: are the complete sum- and difference-frequency excitation force also known 
as quadratic transfer function (or QTF’s) at the sum- and difference-frequencies, and 

respectively. 

The second-order force and moments related to the radiation potential are given by: 

 . (68) 

In addition, the second-order radiation potential can be expressed in terms of the sum and difference 
frequencies as: 

 (69) 

Assuming a small incident wave and proportionally small motions at second-order as in Equation (59), 
this is further reduced to

 
. After substituting into Equation (69), the second-

order radiation potential can be given by: 

 (70) 

The second-order radiation force is thus obtained by substituting Equation (70) into (68): 

 (71) 
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Equation (71) can be further expanded, resulting in: 

 (72) 

with: 

 (73) 

which leads to: 

 (74) 

 
Finally, the second-order hydrostatic force and moment can be given by: 

 (75) 

 (76) 

In the next section the approach towards the modelling of scenarios involving irregular waves as input 
is described, for both the linear and nonlinear approximations. 
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5 STOCHASTIC APPROACH: IRREGULAR WAVES 

Having defined the first (Section 3) and second-order (Section 4) approximations, it is necessary to 
consider the case where the input wave filed is of an irregular nature to study the response of floating 
structures under more realistic input conditions. Following the superposition principle, the free-surface 
elevation can be represented in terms of a stochastic process as a sum of N regular wave components: 

 (77) 

with , where is the amplitude of the jth component wave, given by 
, with the one-side wave amplitude spectra, and its random phase is 

uniformly distributed in the interval .

By representing the input wave spectrum with N components, the time-series of the first-order 
excitation force can be given by: 

 (78) 

where is the complex amplitude of the first-order excitation force associated with the jth wave 
component.  

Comparisons between the linear and the nonlinear formulation can focus the excitation force under 
irregular waves as a benchmark (see Section 6). The time-series of the second-order excitation force 
are directly calculated from the input wave spectrum and the second-order sum and difference 
frequency force quadratic transfer function (QTF): 

 (79) 

where the sum and difference-frequency force QTF satisfy the symmetry relations: and 
.

The one-sided spectra of the sum and difference frequency forces are obtained as:  

 (80) 

 (81) 

The influence of the first and the second-order excitation force in the overall response of the floating 
bodies is accessed in Section 6 for the geometries under study. Results are further extended to arrays 
in Section 7. 
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6 HYDRODYNAMIC FORCES AND UNCONSTRAINED MOTIONS 
ASSOCIATED WITH A SINGLE TRUNCATED CYLINDER 

This section presents the results associated with the computation of first and second-order 
hydrodynamic quantities for a single, freely floating truncated cylinder with diameter and draft equal 
to 20m. The water depth considered in this exercise is equal to 80m. Table 1 lists other main properties 
associated with this cylinder. 

The hydrodynamic quantities computed in this exercise are: 
 

• The first and second-order excitation forces;  
• The first and second-order response amplitude operators (RAOs) for unconstrained motions. 

The responses associated with these quantities are computed for a total of 45 different regular waves 
with different periods and the steady state time series responses are evaluated for 4 different values of 
wave steepness in Section 6.2.1. 

The steady state responses associated with a unidirectional Pierson-Moskowitz (PM) spectrum with 
significant wave height of 2.5m (and Tp=7.9s) described by 16  and 8 frequency components are 
presented in Section 6.2.2.  

The absolute value associated with the sum and difference frequency force QTFs are shown in terms 
of contour plots to show the levels associated with the second-order interactions and for which wave 
periods are more important. 

For an axi-symmetric device the problem is simplified and the only modes that are relevant for head 
on waves are, surge, heave and pitch.  
 

Main properties of the cylinder. 
Diameter: 20 m 
Draft: 20 m 
Volume of displaced water 6.28x103 m3

Mass  6.44x106 kg 
Position of the centre of mass (in the global CS) (xCM)1 = 0.0 m 

(xCM)2 = 0.0 m 
(xCM)3 =-14.59 m 

Inertia matrix  I11 = 2.38x108 kg m2

I22 = 2.38x108 kg m2

I33 = 1.82x108 kg m2

Water depth  80 m. 

Table 1: Main geometric properties associated with the cylinder. 
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6.1 Convergence tests: general notes 

Prior to the evaluation of any hydrodynamic quantity the degree of accuracy of the numerical solution 
should be assessed to ascertain the influence of the discretisation of the geometry. 

A finer discretisation may represent more accurately the geometry and therefore evaluate more 
accurately the velocity potential. However the computational effort increases with finer discretisation 
and so this convergence exercise is required to define the right balance between the required accuracy 
and computational effort. 

There are not many studies related to convergence studies of second-order quantities computed with 
WAMIT. Birknes (2001) used this software to evaluate the wave elevation around four bottom 
mounted cylinders and four truncated cylinders at a spacing equal to 2D, with D being the cylinder’s 
diameter. The study showed that the convergence is rapidly achieved for the first-order and the 
difference-frequencies second-order wave elevation. The main problems in the convergence were 
found for the sum-frequency component. The study also showed that the convergence was easier to 
achieve for long waves and some rules of thumb were defined to give general recommendations on the 
discretisation of the geometry of the floating bodies such to achieve better convergence results: 

1) There should be at least 11 panels per second-order wavelength due to sum-frequencies (44 
panels per linear wavelength). 

2) Near the cylinders the free-surface should be discretised with a structured and dense mesh. 

3) The width of the panels on the free-surface must not be too small compared with the length of 
the panels (aspect ratio ~0.5). For the panels which border on the cylinders, the longest side of 
the panel should border on the cylinder. 

4) The cylinders should be discretised with small panels near the free-surface. 

It should be also noted that the quadratic component of the second-order excitation force and moment 
given by Equations (64) and (65), depends on the products of first-order quantities and thus the 
accuracy of the second-order solution is dependent on the first-order results. 

To evaluate the convergence of the first-order solution, the methodology presented by Roache (1997) 
which applies standard convergence procedures based on Richardson extrapolation method to 
computations performed with WAMIT higher order method is followed. 

The exact value of a certain quantity ( ) is estimated by evaluating its value at three different 
discretisations of the geometry ( ). The error associated with the finer discretisations is given by: 

 (82) 

where are the values of the quantity being evaluated and hi is the grid cell size associated with the 
discretisation i. The subscript 1 refers to a finer discretisation than 2 and 3 to a coarser discretisation 
than 1.  

The order of convergence (p) is a quantity which depends on the implementation of the code itself and 
in general is not known. The value for this quantity is straightforward to compute for a constant 
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refinement ratio, i.e. h3/h2 = h2/h1= r = const. Assuming also that the asymptotic range has been 
reached, p is given by: 

 . (83) 

The results of the convergence in the present study are evaluated through the error norm defined by: 

. (84) 

The grid convergence ratio (R) is a useful quantity to identify the behaviour of the convergence. This 
quantity defined by: 

, (85) 

and the solution is classified in terms of the value of R as: 

• Oscillatory divergence, if  R < -1; 

• Oscillatory convergence, if  -1 < R < 0;

• Monotonic convergence, if 0 < R < 1;

• Monotonic divergence, if R >1.

Finally, the uncertainty (Uk) associated with the computations finer discretisation ( ) is given by: 

 (86) 

where Fs is a safety factor which may vary between 1 and 3. In the present study a conservative 
approach was taken and Fs = 3.

Figure 2: Representation of one quarter of the free-surface divided into the different integration 
regions. (A) Floating structure, (B) inner region, (C) annular region, (D) outer region.  
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The computation of the second-order hydrodynamic quantities also requires the discretisation of the 
free-surface. Therefore the spatial extension and the size of this additional mesh are additional 
parameters to consider.  

Figure 2 presents a representation of the different regions that need to be considered. The free-surface 
is discretised into quadrilateral panels and the free-surface integral is evaluated separately in two 
domains separated by a partition circle with radius . This partition should be sufficiently large to 
enclose the body and its local disturbance and thus the effect of the evanescent waves outside the 
circle can be neglected. The outer region of the free-surface is defined by and 
both the Green function and the first-order potentials are expanded in Fourier-Bessel series.  

The neglected evanescent terms are local and decay exponentially with radial direction in a fluid of 
finite depth. For this case, if is large, the evanescent modes are proportional to 
(with π/2 < C < π) and so resulting in a small error if . In the infinite water depth limit the 
evanescent modes decay on the free-surface proportionally to and so the partition radius 
should ensure that so that there are no significant error contributions in the partitioned 
integral. 

To achieve accurate results, the partition circle ( ) for shallow water depths should be of the same 
order as the water depth ( ) whereas for deep-water it is advised to be of the same order as 
the larger wavelength (( ): ). 

In the inner region domain ( ), the integration is carried out numerically. To 
further reduce the computational burden, the inner region is subdivided into two or more annular 
regions of radius, . For regions close to the body ( ), the integration is 
carried out by numerical quadratures whereas for the annular regions away from the body, between 

, a more computationally efficient integration is performed by using Gauss-Chebychev 
quadrature in the azimuthal direction and Gauss-Legendre quadrature in the radial direction.

Finally, the inner partitions radius ( ) should be determined with care. If  is too close to the 
body the integration over the annular region may not be efficient as intended.  

 

6.1.1 Convergence studies for the single cylinder: first and second-order 

The geometry of the single truncated cylinder was discretised for three grid sizes as shown in Figure 3. 

Following Roache (1997), the grid cell size (hi) is related to the WAMIT higher order panel size 
parameter associated to an automatic discretisation of the geometry. Panel sizes equal to 8, 4 and 24

were considered and the hydrodynamic quantities were evaluated for ten wave periods randomly 
selected between 5 and 16s. 

 
4 The panel size parameter is only indicative of the discretisation in the physical space. For the present case the number of 
panels in one quarter of circle (angular direction) are equal to 8, 16 and 32 when the panel size parameter is equal to 8.0, 4.0 
and 2.0. 
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(a) (b) 

(c) 

Figure 3: Three discretisations of the geometry for the truncated cylinder used for the 
convergence tests. The panel size parameter equal to (a) 8.0, (b) 4.0 and (c) 2.0. 

 
Convergence Ratio ( R ) Order of convergence ( p )

T (s) | FX1 | | FX3 | | FX5 | | FX1 | | FX3 | | FX5 | 
5.32 0.740 0.601 0.467 0.435 0.735 1.100 
6.85 0.684 0.525 0.469 0.548 0.929 1.094 
7.01 0.630 0.532 0.475 0.666 0.912 1.074 
7.64 0.549 0.528 0.493 0.866 0.922 1.019 
10.39 0.490 0.555 0.494 1.029 0.849 1.018 
11.34 0.475 0.578 0.499 1.074 0.790 1.004 
12.84 0.475 0.581 0.496 1.073 0.783 1.012 
13.86 0.480 0.592 0.492 1.060 0.756 1.024 
14.75 0.476 0.570 0.494 1.072 0.810 1.018 
15.77 0.477 0.586 0.489 1.067 0.772 1.032 

Table 2: Convergence ratio (R) and order of convergence (p) associated with the absolute value 
of the linear excitation force for a discretisation triplet with panel sizes equal to 8.0, 4.0 and 2.0 

for the truncated cylinder. 

The convergence ratio (R) and the order of convergence (p) associated with the discretisation triplet 
used in this study are given in Table 2 for the linear excitation forces. The values of R depend on the 
hydrodynamic quantity being evaluated and on the frequency. Most of the values are between 0 and 1 
and the solution for the evaluated cases can be classified as monotonic convergent. 

An estimation of the exact solution for the linear excitation force associated with the incident wave 
periods and the uncertainty associated with the finer mesh (panel size equal to 2.0) for the linear 
excitation forces is present in Table 3.  
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The evolution of the convergence for four different discretisations is presented in terms of the error 
norm defined by Equation        (84) for the linear excitation forces (Figure 4). WAMIT does not 
provide the solution on each panel, and it also does not output the total number of panels. Throughout 
the study the number of equations (N) in the linear system (which corresponds to the number of 
unknowns) is used as a measure of the total number of panels. The relationship between N and the 
panel size is presented in Table 4. Overall the uncertainty estimates are relatively small when 
compared to the absolute value of the excitation force for all tested wave frequencies.  

 

Exact value estimation Uncertainty associated 
with the finer discretisation 

T (s) | FX1 | | FX3 | | FX5 | | FX1 | | FX3 | | FX5 |
5.32 265.39 6.96 2389.48 0.135 0.077 0.695 
6.85 398.5 29.94 3094.2 0.317 0.144 1.616 
7.01 404.8 33.3 3105.44 0.266 0.157 1.714 
7.64 412.98 47.06 3043.5 0.233 0.180 1.951 

10.39 313.5 111.83 2078.03 0.192 0.256 1.627 
11.34 274.83 132.04 1783.86 0.160 0.289 1.518 
12.84 224.72 159.64 1423.8 0.134 0.271 1.272 
13.86 197.25 175.73 1234.54 0.121 0.272 1.111 
14.75 176.94 188.1 1097.85 0.106 0.226 1.021 
15.77 157.27 200.53 967.83 0.096 0.229 0.892 

Table 3: Estimations of the exact value and uncertainty of the finer discretisation associated with 
the linear excitation force for the incident wave periods considered in this study. 

 

Panel Size (m) 1.0 2.0 4.0 8.0 
Number of Unkowns 882 290 108 52 
Simulation time per wave 
period  (POT module) (s) 

100 7 <1 <1 

Table 4: Relation between panel size parameter and the number of unknowns in the equations in 
WAMIT for the OC3-Hydrowind discretisations of the geometry. 
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Figure 4: Evolution of the convergence in terms of the error norm for the linear excitation 
force associated with the single truncated cylinder. 

 
1st order Free-surface parameters  Sum-freq. force QTFs 

Run Panel 
Size 

Number 
of 

Unknowns
scale 

Partition 
radius (ρ0)

[m] 

Inner 
Circle 

(ρ1) [m]
NAL DELR NCIRE NGSP 

Number of 
panels in the 
free-surface 

Comp. 
Time 
[min] 

|f+| 
(Surge)

|f+| 
Heave 

|f+| 
Pitch 

01 2.0 290 1.0 50 50 0 0 0 0 7299 21 23.49 3.69 153.38 

02 2.0 290 1.0 50 25 1 25 4 8 1674 6 18.31 3.68 99.74 

03 2.0 290 1.0 50 25 1 25 4 16 1674 8 23.59 3.69 154.59 

04 2.0 290 1.0 150 25 5 25 4 16 1674 12 24.23 4.57 157.8 

05 2.0 290 1.0 175 25 6 25 4 25 1674 12 24.06 4.61 155.5 

06 2.0 290 1.0 175 25 3 50 4 50 1674 13 24.06 4.61 155.5 

07 2.0 290 1.0 174.9 12.5 8 20.3 6 20 296 31 24.09 4.6 156.04 

08 4.0 108 0.5 175 25 6 25 4 25 1583 2 23.35 4.51 146.64 

09 4.0 108 0.25 175 25 6 25 4 25 6110 6 23.34 4.51 146.66 

Table 5: Computed values of the sum frequency force QTF for a regular wave with T=5s 
associated different discretisations of the free-surface and cylinder geometry.5

5 (NAL – number of annular regions; DELR- length of the annular region; NCIRE – related with the number of nodes for the 
azimuthal integration (Gauss-Chebichev quadrature); NGSP – number of radial nodes (Gauss-Legendre Quadrature). 
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The influences of the parameters associated with the discretisation of the free-surface were 
investigated initially for a regular wave with period equal to 5.0s. For this regular wave, the associated 
deep-water wavelength is equal to 37.5m and the second-order sum-frequency wavelength is equal to 
9.4m. Following the recommendations by Birknes (2001) a suitable length for the free-surface panel is 
approximately 0.85m.  

Table 5 show the values obtained for the sum-frequency QTF obtained for different discretisations of 
the free-surface. Run 01 took into account a definition with no annular region. The partition radius is 
coincident with the inner radius and equal to 50m (see Figure 2). Such a definition is computationally 
less efficient than if an annular region was defined but the integration over this region should give 
more accurate results. To decrease the computation time it is thus recommended to define an annular 
region. Runs 02 to 07 test the influence of several parameters in the definition of the free-surface. It 
was also observed that a coarser mesh with panel size equal to 4.0 (instead of 2.0) decreases 
substantially the computation time with small variation in the computed value of the sum-frequency 
force (roughly 5%).  

To assess the influence of the spatial extension of the partition radius in the sum-frequency force QTF, 
a series of simulation runs which considered increasingly larger annular regions were performed. In 
these runs, the sum-frequency combination between three monochromatic waves with periods equal to 
5.0, 10 and 16s were considered for a fixed radius of the inner region (equal to 25 m) and a panel size 
of 4.0. The scale factor for the discretisation of the free-surface was chosen to be equal to 0.5, giving a 
total number of panels associated with the inner region equal to 1583. Figure 6 shows the results 
associated with the sum-frequency force QTF for the three modes of motion (surge, heave and pitch). 
Overall the variation of the results with the partition radius is small. Oscillations in the solution were 
observed for the smaller wave periods of the sum-frequency force QTF for partition radius larger than 
400m. The small dispersion observed for the larger sum-frequency wave periods gives an indication 
that there is no visible advantage to define a partition radius much larger than the largest of the 
wavelengths. Hereafter this parameter will be defined as being equal to 425m.  
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Figure 5: (a) Top view of the discretisation of the free-surface used in run 01, (b) Isometric view 
of the discretisation used for run 08. 
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Figure 6: Variation of the sum-frequency force QTF with the length of the partition radius. 

However it should be pointed out that the sum-frequency force QTFs in heave at the resonance 
frequency (T~10.25s) did not converge and so special attention should be considered for this mode for 
periods near resonance. This might be related with the large heave motions attained at resonance and 
the dependence of the quadratic second order force component (fq) on the first-order motions of the 
structure (see Section 4.4).  

 

6.2 Results: single truncated cylinder 

6.2.1 Regular waves 

This section presents the first and second-order hydrodynamic quantities computed for the single 
truncated cylinder. 

The frequency dependence of the added-mass and damping coefficients required to compute the 
radiation force (see Equation (30)) is shown in Figure 7 and Figure 8, respectively.. The symmetry of 
the added-mass matrix imply that all crossed terms are equal (Akl = Alk for k,l=1,…,6) and the axi-
symmetry of the structure implies that the terms in surge and sway are equal (A11=A22), as are the roll 
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and pitch terms (A44=A55). The crossed terms are all null apart from A15 = -A24. Note that the same 
relations apply to the hydrodynamic damping components.  

The hydrodynamic coefficients are given as non-dimensional quantities. To convert to dimensional 
quantities, both coefficients should be multiplied by the value of density of the fluid (ρ) and the 
hydrodynamic damping should be also multiplied by the angular frequency of the incident wave (ω):  

 (87) 

Henceforth the modes of motion surge, sway, heave, roll, pitch and yaw are referred to by the 
subscript numbers 1,2,3,4,5,6 respectively. 
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Figure 7: Added-mass coefficients for the truncated cylinder (head-on waves).  
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Figure 8: Hydrodynamic damping coefficients for the truncated cylinder (head-on waves). 
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As shown in Section 4.4 the computation of the second-order radiation force is identical to the first-
order but at the respective sum and difference frequencies. 

The linear hydrostatic force is proportional to the displacements of the structure and is given in terms 
of the hydrostatic coefficients by Equation (25). The non-dimensional hydrostatic coefficients for the 
truncated cylinder are shown in Table 6. These coefficients do not depend on the frequency of the 
incident wave and are computed relatively to the origin of the body coordinate system which is 
coincident with the centre of mass of the structure. The axi-symmetry of the structure implies that the 
hydrostatic coefficient in roll (C44) is the same as in pitch (C55). The dimensional values of these 
coefficients can be obtained by multiplying the non-dimensional values by ρ and g:

(88) 

 
C33 314.157

C44, C55 36693.9

Table 6: Non-dimensional hydrostatic coefficients associated with the truncated cylinder. 

 

The first and second-order excitation forces and moments associated with monochromatic waves with 
periods between 5 and 16s are shown in Figure 9. These are computed at the centre of mass of the 
structure and are given as non-dimensional quantities.  

The dimensional value of the first-order excitation forces is obtained by multiplying the non-
dimensional value of the force or moment by the density of the water ( ), the gravitational constant (g)
and the wave amplitude (a): 

 . (89) 

The dimensional value of the sum- and difference-frequency force QTF are obtained by: 

,

where the a* is the complex amplitude of the incident wave. 

The importance of the second-order component of the excitation force increases with the amplitude of 
the incident wave. In Section 4 it was shown that in the weakly nonlinear hydrodynamic 
approximation perturbation theory is used to separate the problem into a first and second-order 
formulation and the final solution is obtained by the superposition of the two. The time-series of the 
total excitation force is thus obtained via .

For a monochromatic wave, the second-order excitation force given by Equation (79) is reduced to the 
computation of the sum and difference frequency force QTFs ( ) at the double 
( ) and zero frequency ( ). The second-order excitation force is 
thus given by: 

(90) 



Document No.: 104327/BR/04 WG1 WP1 D8 Weakly Nonlinear Hydrodynamics of 
Freely Floating WECs 

Issue:  1.0 FINAL 

Garrad Hassan & 
Partners Ltd 

34 
Not to be disclosed other than in line with the terms of the technology contract 

where a is the complex amplitude of the incident (monochromatic) wave which has a phase 
component ( ) uniformly distributed between [0, 2π]: .

A comparison between the non-dimensional absolute value of the first and the second order sum and 
difference frequency excitation forces is given in Figure 9 for surge, heave and pitch modes. The 
results show that for most of the wave periods the first order excitation force is much higher than both 
second order sum and difference frequency components. For most of the (monochromatic) wave 
periods it is also shown that the sum frequency component is dominant over the difference frequency. 
In heave mode, for the wave period equal to 10.25 s, the absolute value of the second order 
components has a peak value which is higher than the correspondent first order component. This 
particular wave period is close to the resonance in heave of the freely floating cylinder and as such 
some care should be taken in the interpretation of the results as poor convergence was observed for the 
sum-frequency component of the excitation force. 

 

The force time series associated with regular waves with the steepness values given in Table 7 are 
presented in Figure 10 to Figure 16 for surge, heave and pitch modes. In surge, first-order effects are 
dominant except for the steepest wave (T=10.25s, H=6m) for which the sum-frequency component of 
the second-order force is maximum (see Figure 9). In heave, for the shorter waves, the second-order 
component of the excitation force is of the same order as the first-order. In pitch the first-order 
component is dominant for the less steep waves and the relative importance of the second-order 
component increases substantially for the two largest waves. 
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Figure 9: Absolute value of the first and second-order components of the excitation force in 
surge, heave and pitch for the truncated cylinder. 

Period (T) [s] Height (H) [m] Wavelength (λ) [m] Steepness (H/λ)
5.0 1.0 37.5 0.0267 
7.0 2.0 73.5 0.0272 
9.0 4.0 121.5 0.0329 

10.25 6.0 157.6 0.0381 

Table 7: Wave periods of the monochromatic waves considered for the comparisons between 
linear and second-order hydrodynamic quantities. 
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Figure 10: First, second-order and total excitation force in surge for four regular waves with 
parameters given in Table 7. 
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Figure 11: First, second-order and total excitation force in heave for four regular waves with 
parameters given in Table 7. 
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Figure 12: First, second-order and total excitation force in pitch for four regular waves with 
parameters given in Table 7. 

 

The frequency dependence of the first and second-order components of the response amplitude 
operator (RAO) for the unconstrained motions of the truncated cylinder is shown in Figure 13. The 
freely floating truncated cylinder has a resonance period in surge and pitch at about 8.5s and in heave 
at about 10.3s. The absolute value of the second-order RAOs associated with the monochromatic 
waves are of an order of magnitude smaller than the first-order. 

The time series of the first and second-order components of the unrestrained motions in surge, heave 
and pitch for the regular waves presented in Table 7 are shown in Figure 14 to Figure 16. 

In surge and pitch the first-order unrestrained motions are dominant except for the steepest wave with 
period equal to 10.25s and height of 6m, for which the second-order component of the motions is of 
the same order of magnitude as the first-order. In heave the first-order motions are dominant for the 
regular waves considered in this study. 
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Figure 13: First and second-order components of response amplitude operator (RAO) for the 
unrestrained motions in surge, heave and pitch for the truncated cylinder. 
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Figure 14: First, second-order and total unrestrained motion of the truncated cylinder in surge 
for four regular waves with parameters given in Table 7. 
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Figure 15: First, second-order and total unrestrained motion of the truncated cylinder in heave 
for four regular waves with parameters given in Table 7. 
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Figure 16: First, second-order and total unrestrained motion of the truncated cylinder in heave 
for four regular waves with parameters given in Table 7. 
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6.2.2 Irregular waves 

This subsection describes the first and second-order simulations associated with a truncated cylinder 
for a sea state described by a Pierson-Moskowitz spectrum. As for regular waves (Section 6.2.1) the 
excitation forces and unrestrained body motions were calculated.  

The Pierson-Moskowitz spectrum is used to describe fully developed seas. The variance density, S(f), 
that obeys the Pierson-Moskowitz  formula can  be defined (Tucker and Pitt, 2001): 

 , (91) 

where and are fixed dimensionless parameters of the distribution, is a 
parameter which is related to the wind speed. It can also be related to the significant wave height (Hs)
and the peak frequency ( ) of the spectrum:  

 (92) 

The absolute value of the amplitude associated with each spectral component is given by 
and the free-surface elevation can be represented in terms of a stochastic 

process as a sum of N regular wave components with random phase as given by Equation (77). 

Using the input wave spectrum and the second-order sum and difference frequency force QTFs 
( ), the time series of the second-order excitation force is directly calculated from: 

 , (93) 

where the sum and difference-frequency force QTF satisfy the symmetry relations: and 
.

This study considered a unidirectional Pierson-Moskowitz spectrum with Hs=2.5m (leading to 
Tp=7.9s). This was described by sixteen and eight components equally spaced by 0.01 and 0.02Hz 
(respectively), as shown by the histograms (Figure 17, top). The histograms at the bottom of the same 
figure show the wave amplitudes and periods associated with each spectrum. 
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Figure 17:(Top) Pierson-Moskowitz spectrum with Hs= 2.5m (Tp = 7.9s), (Bottom) Wave 
amplitude and period associated with the top spectrum. The left spectrum is discretised with 

sixteen components whereas the right spectrum by eight. 

 

The sum- and difference- frequency force QTFs ( , ) computed for the truncated cylinder in 
surge, heave and pitch modes for the sixteen frequency components associated with this spectrum are 
shown in Table 9 to Table 15 of Appendix A. 

Figure 18 shows the associated contour plots for the absolute value of the sum and difference 
frequency QTFs. Note that these plots are consistent with the results obtained for the monochromatic 
waves (Figure 9) with the main peaks located at the wave period interactions where the higher values 
were found. 

The first and second-order excitation forces in surge, heave and pitch modes for the truncated cylinder 
associated with the Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) are shown in Figure 19. The 
plots represent the response associated with the same spectrum discretised with sixteen (left) and only 
eight (right) components. The repeat periods are respectively equal to 100 and 50s. The plots show 
that for the truncated cylinder, the first order excitation forces are dominant for surge and pitch modes. 
For the heave mode the second order excitation force shows a more important contribution for the total 
force. It is also seen that the differences between the responses obtained with the spectrum discretised 
with sixteen and eight components is small except in heave. 
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Figure 18: Contour plots for the sum and difference frequency force QTFs (16 components) 
associated with the truncated cylinder for the modes of motion: surge (1), heave (3) and pitch 

(5). 
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Figure 19: First, second and total excitation forces in surge, heave and pitch for the truncated 
cylinder for a Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) described by sixteen (left) 
and eight components (right). 

 

The comparisons of first and second-order unrestrained motions in surge, heave and pitch for the 
truncated cylinder associated with a Pierson Moskowitz spectrum with Hs=2.5 m (Tp=7.9 s) described 
by sixteen and eight components are shown in Figure 20.. The unrestrained motions for the truncated 
cylinder are small. The first order unrestrained motions are dominant for heave and pitch. In surge, 
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one can observe the slowly drift motion associated with the difference frequency component. The 
representation of this motion seems to be affected by the number of components chosen to represent 
the input spectrum and the long drift period is associated with the repeat period of the spectrum. 

 

0 20 40 60 80 100
-2

-1

0

1

2

3

un
re

st
ra

in
ed

m
ot

io
n

(s
ur

ge
)[

m
]

Time [s]

 0 20 40 60 80 100
-2

-1

0

1

2

3

un
re

st
ra

in
ed

m
ot

io
n

(s
ur

ge
)[

m
]

Time [s]

 

0 20 40 60 80 100
-3

-2

-1

0

1

2

3

un
re

st
ra

in
ed

m
ot

io
n

(h
ea

ve
)[

m
]

Time [s]

 
0 20 40 60 80 100

-3

-2

-1

0

1

2

3

un
re

st
ra

in
ed

m
ot

io
n

(h
ea

ve
)[

m
]

Time [s]

 

0 20 40 60 80 100
-20

-15

-10

-5

0

5

10

15

un
re

st
ra

in
ed

m
ot

io
n

(p
itc

h)
[d

eg
]

Time [s]

 
0 20 40 60 80 100

-15

-10

-5

0

5

10

15

un
re

st
ra

in
ed

m
ot

io
n

(p
itc

h)
[d

eg
]

Time [s]

 

Figure 20: First, second and total unrestrained motions in surge, heave and pitch for the 
truncated cylinder for a Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) described by 

sixteen (left) and eight components (right). 
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7 HYDRODYNAMIC FORCES AND UNCONSTRAINED MOTIONS 
ASSOCIATED WITH AN ARRAY WITH FOUR TRUNCATED CYLINDERS  

This section presents the results associated with the computation of first and second-order 
hydrodynamic quantities associated with a square array with four truncated cylinders spaced three 
diameters (D) apart. Each cylinder in the array has a diameter (and draft) equal to 20m and is free to 
move in six degrees-of-freedom. The geometric and mass properties of the cylinders are presented in 
Table 1 and are the same as the cylinders presented in (Cruz, 2010). The present study extends some 
of the results presented in Cruz (2010) to the second-order hydrodynamic interactions obtained for 
head on waves for the array with the above spacing. 

The cylinders in the array are numbered in the anti-clockwise direction. The DOF are numbered 
consecutively following the order of the cylinders in the array (up to a total of 24). For example, the 
heave mode of cylinder 3 is given by mode 15 (see Figure 21). This study only considers head-on 
waves which as shown in Figure 21 . For each cylinder all modes of motion are of interest except yaw. 
The water depth considered in this exercise is equal to 50m. 

 

Figure 21: Top view for the layout of the array with four cylinders. Each cylinder in the array is 
numbered in the anti-clockwise direction and the modes of motion (surge, sway, heave, roll, 

pitch, yaw) are numbered continuously for each cylinder. 

 

The hydrodynamic quantities are computed for forty nine regular waves, with frequencies between 
4.0s to 16.0s equally spaced by 0.25s, and for a unidirectional Pierson-Moskowitz spectra with a 
significant wave height of 2.5m described by sixteen frequency components. The hydrodynamic 
quantities computed in this exercise are: 

• The first and second-order exciting forces ; 
• The first and second-order Response Amplitude Operator (RAO) for unconstrained motions. 
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7.1 Convergence tests 

For the four cylinder array the computational time required to obtain the solutions for the first and 
second-order quantities increases very significantly when compared with the single truncated cylinder 
case (Section 6). This is mainly due to the impossibility to use planes of symmetry to describe the 
geometry of each cylinder, thus multiplying by 4 the number of panels for each cylinder and by 16 for 
the full array. Furthermore, the computation of second-order quantities requires the discretisation of 
the free-surface to be increased so as to include the entire array. 

For the convergence of first order quantities, the same procedure described for the single truncated 
cylinder was followed (see Section 6.1), evaluating the hydrodynamic quantities for 10 random wave 
periods in the interval between 5 and 16s for three panel sizes equal to 8m, 4m and 2m, respectively. 
The convergence was found to be monotonic for most cases and the uncertainty estimates were 
relatively small when compared to the absolute value of the exciting force for the tested wave periods. 
The evolution of the convergence of the exciting forces for the four cylinders is presented in terms of 
the error norm (given by Equation 84) in Figure 23. For this plots a total of six different 
discretisations was considered for which the relationship between the number of unknowns (N) of the 
first order solution and the panel size is given in Table 8. The panel size equal to 4.0m was selected 
and the discretised geometry of the array is shown in Figure 22. 
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Figure 22:Discretisation of the geometry for the array with four cylinders (panel size 4.0) 
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Figure 23:Evolution of the convergence in terms of the error norm for the linear exciting 
force associated with the array with four cylinders. 

 

Panel Size (m) 2.0 4.0 5.0 6.0 8.0 16.0

Number of Unkowns 4640 1728 1632 1120 832 480 

Table 8: Relationship between the panel size and the number of unknowns used to test the 
evolution of the convergence. 

 

The second-order computations were performed with the free-surface discretised for an inner circle 
equal to 65.5m and a partition circle equal to 120m. For the sum-frequency problem, the free-surface 
was discretised with a very fine mesh with the same spacing as used in the case of the single truncated 
cylinder. Because it is possible to achieve convergence for the difference-frequency problem with a 
coarser mesh, the computation of the difference-frequency quantities considered a mesh with larger 
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panels. The meshes used to compute the sum-frequency and the difference frequency problem are 
shown in Figure 24. 
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Figure 24:Discretisation used to compute the sum-frequency (left) and difference-frequency 
(right) problem. 

 

7.2 Results for the array with four cylinders. 

7.2.1 Regular Waves 

This subsection is focused on the comparison between the non-dimensional absolute value of the first 
and the second-order sum and difference-frequency exciting forces for the cylinders 1 and 2 in the 
array for monochromatic waves (see Figure 21). The results are shown in Figure 25 and Figure 26 for 
all relevant modes of motion for these two cylinders. The curves associated with the first-order 
exciting forces show the expected variations due to the interactions between the cylinders of the array. 
When comparing with the plots computed for the single cylinder (Figure 9), an increase of the peak 
values associated with the sum-frequency component can be seen, whereas a decrease for the 
difference-frequency can also be observed. In surge, sway, roll and pitch and for both cylinders there 
is a sharp increase of the peak located around the wave period equal to 7.5s with values that are of the 
same order or higher than the first order component. 

The plots for the components of the absolute value of the first and second-order sum-frequency RAOs 
are shown in Figure 27 and Figure 28 for the modes of motion of interest. The plots show that for all 
modes the second-order component of the RAOs is much smaller than the first-order component and 
so the first-order unrestrained motions are dominant. 
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(a) surge mode (cylinder 1) 
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(c) sway mode cylinder 1 
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(e) heave mode cylinder 1 

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

M
od

(F
X
)(

m
od

e
9)

Wave Period [s]  
(f) heave mode cylinder 2 

 

Figure 25: Absolute value of the first and second-order sum and difference frequency 
components of the exciting force in surge, sway and heave for cylinders 1 and 2 of the array. 

 



Document No.: 104327/BR/04 WG1 WP1 D8 Weakly Nonlinear Hydrodynamics of 
Freely Floating WECs 

Issue:  1.0 FINAL 

Garrad Hassan & 
Partners Ltd 

53 
Not to be disclosed other than in line with the terms of the technology contract 

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

M
od

(F
X

)(
m

od
e

4)

Wave Period [s]
 

(a) roll mode cylinder 1 
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(c ) pitch mode cylinder 1 
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Figure 26: Absolute value of the first and second-order sum and difference frequency 
components of the exciting force in roll and pitch for cylinders 1 and 2 of the array. 
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(a) surge mode cylinder 1 
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(b) surge mode cylinder 2 
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(c) sway mode cylinder 1 
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(d) sway mode cylinder 2 
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(e) heave mode cylinder 1 
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(f) heave mode cylinder 2 

 

Figure 27:First and second order sum-frequency component RAOs in surge, sway and heave of 
the unrestrained cylinders 1 and 2 in the array. 
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Figure 28:First and second order sum-frequency component RAOs in roll and pitch of the 
unrestrained cylinders 1 and 2 in the array. 
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(a) exciting forces in surge for cylinder 1. 
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(b) exciting forces in surge for cylinder 2. 
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(c) exciting forces in sway for cylinder 1. 

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

Time [s]

E
xc

ita
tio

n
F

or
ce

(m
od

e
8)

[M
N

]

Monochromatic wave (T=7 s; H=2 m)

 

(d) exciting forces in sway for cylinder 2. 
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(e) exciting forces in heave for cylinder 1. 
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(f) exciting forces in heave for cylinder 2. 

Figure 29: First, second-order and total exciting force in surge, sway and heave for cylinders 1 
and 2 in the array for a wave with period T=7s and height H=2m. 
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Figure 30: First, second-order and total exciting force in roll and pitch for cylinders 1 and 2 in 
the array for a wave with period T=7s and height H=2m. 

 

7.2.2 Irregular waves. 

In this subsection irregular wave results obtained for the array of four truncated cylinders are 
presented. The input sea state was selected as a unidirectional Pierson-Moskowitz spectrum for which 
the variance density is given by Equation (91). A Hs equal to 2.5m was selected (leading to Tp=7.9s). 
The direction of the incident waves is shown in Figure 21. The spectrum is discretised with 16 
components equally spaced by 0.01 Hz.  

The time series associated with the first, second and total exciting forces computed by Equations (78) 
and (79) and associated with this spectrum are shown for all relevant modes of motion for cylinders 1 
and 2 in the array in Figure 31 and Figure 32. The plots show that the first order exciting force 
component is dominant for most modes of motion. Comparing with the case of the single truncated 
cylinder, it can be observed that due to the array interactions a higher second-order component in 
surge occurs for the front cylinder (1) in the array and also that the second-order exciting force 
component in heave for the front cylinder has an important contribution for the total exciting force, as 
was the case for the single truncated cylinder. 
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The contour plots obtained for the absolute value of the sum and difference-frequency QTFs for 
cylinders 1 and 2 in the array for all modes of motion are shown in Figure 33 to Figure 36. When 
comparing these with the single truncated cylinder case (Figure 18), the plots show in general higher 
values around the peaks for the front cylinder (1). The results are also consistent with what was 
observed for the regular waves case for which the peaks are found at the interacting wave periods 
around 7 and 10s which have higher values for the regular waves. 

The first and second-order unrestrained motions for cylinders 1 and 2 in the array for all relevant 
modes of motion are shown in Figure 37 and Figure 38. As in the case of the single cylinder, the first-
order unrestrained motions are dominant in most cases, except for surge and sway where the slowly 
drift motion associated with the difference-frequency component is observed. 

The time series responses of the excitation forces associated with cylinders 1 and 2 in the array are 
shown in Figure Figure 29 and Figure 30. Due to the array interactions, the excitation forces in sway 
roll are of the same order of magnitude as the forces in surge and pitch respectively which did not 
occur for the case of the single truncated cylinder where these forces were negligible due to the 
axisymmetric propertied of the cylinder. For these modes of motion the second order components are 
dominant relatively to the first order. It is also observable that the relative importance of the second 
order component of the excitation forces increases for cylinder number 2 for surge and pitch modes of 
motion. 
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(a) Exciting force in surge for cylinder 1. 
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(b) Exciting force in surge for cylinder 2. 
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(c) Exciting force in sway for cylinder 1. 
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(d) Exciting force in sway for cylinder 2. 
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(e) Exciting force in heave for cylinder 1. 
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(f) Exciting force in heave for cylinder 2 

 

Figure 31: First, second and total exciting forces in surge, sway and heave for cylinders 1 and 2 
in the array for Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) described with sixteen 

components . 
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(a) Exciting force in roll for cylinder 1. 
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(b) Exciting force in roll for cylinder 2. 
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(c) Exciting force in pitch for cylinder 1. 
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(d) Exciting force in pitch for cylinder 1. 

Figure 32: First, second and total exciting forces in roll and pitch for cylinders 1 and 2 in the 
array for Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) described with sixteen 

components . 
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(a) Sum-frequency force QTF in surge. (b) Difference-frequency force QTF in surge. 

(c) Sum-frequency force QTF in sway. (d) Difference-frequency force QTF in sway. 

(e) Sum-frequency force QTF in heave. (f) Difference-frequency force QTF in heave. 

Figure 33: Contour plots of the absolute value of the sum and difference frequency force QTFs 
for cylinder 1 in the array. 
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(a) Sum-frequency force QTF in roll. (b) Difference-frequency force QTF in roll. 

(c) Sum-frequency force QTF in pitch. (d) Difference-frequency force QTF in pitch. 

(e) Sum-frequency force QTF in yaw. (f) Difference-frequency force QTF in yaw. 

Figure 34: Contour plots of the absolute value of the sum and difference frequency force QTFs 
for cylinder 1 in the array. 
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(a) Sum-frequency force QTF in surge. (b) Difference-frequency force QTF in surge. 

(c) Sum-frequency force QTF in sway. (d) Difference-frequency force QTF in sway. 

(e) Sum-frequency force QTF in heave. (f) Difference-frequency force QTF in heave. 

Figure 35: Contour plots of the absolute value of the sum and difference frequency force QTFs 
for cylinder 2 in the array. 
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(a) Sum-frequency force QTF in roll. (b) Difference-frequency force QTF in roll. 

(c) Sum-frequency force QTF in pitch. (d) Difference-frequency force QTF in pitch. 

(e) Sum-frequency force QTF in yaw. (f) Sum-frequency force QTF in yaw. 

Figure 36: Contour plots of the absolute value of the sum and difference frequency force QTFs 
cylinder 2 in the array. 
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(a) unrestrained motions in surge for cylinder 1. 
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(b) unrestrained motions in surge for cylinder 2. 
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(c) unrestrained motions in sway for cylinder 1 
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(d) unrestrained motions in sway for cylinder 2. 
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(e) unrestrained motions in heave for cylinder 1. 
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(f) unrestrained motions in heave for cylinder 2. 

 

Figure 37: First, second and total unrestrained motions in surge, sway and heave for cylinder 1 
and 2 in the array for a Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) described by 
sixteen components. 
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(a) unrestrained motions in roll for cylinder 1. 
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(b) unrestrained motions in roll for cylinder 2. 
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(c) unrestrained motions in pitch for cylinder 1. 
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(d) unrestrained motions in pitch for cylinder 2. 

Figure 38: First, second and total unrestrained motions in roll and pitch for cylinder 1 and 2 in 
the array for a Pierson-Moskowitz spectrum with Hs=2.5m (Tp=7.9s) described by sixteen 
components. 
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8 FINAL REMARKS AND NEXT STEPS 

The present report presents the results obtained for the linear and weakly nonlinear hydrodynamic 
forces and unrestrained motions associated with a single truncated cylinder and an array with four 
cylinders which can be used as point absorber WECs. The cylinders are free to move in all modes of 
motion and no PTO mechanism or mooring arrangement is considered in the present report.  

The hydrodynamic forces are obtained through potential flow theory which assumes an incompressible 
and inviscid fluid under a irrotational flow condition. The fluid velocity is described by a potential 
function required to satisfy the Laplace equation in all fluid domain and boundary conditions at the 
interfaces. The full expression of these boundary conditions is mathematically difficult to solve and 
computationally intensive as the numerical methods developed require the redefinition of the problem 
conditions at each time step to fully cover the changes of the free-surface of the fluid and describe 
fully the floating structure motions. 

It is usual, however, to approximate the hydrodynamic solution of the problem to first or second-order 
by assuming that the wave amplitude of the incoming waves is small in relation to the wavelength. 
These approximations are computationally more efficient as a time stepping solution can be avoided 
by computing the hydrodynamic forces and motions over the mean wet surface instead of the 
instantaneous wet surface of the floating structure.  

It should be noted that the present report does not access any result associated with fully nonlinear 
potential flow hydrodynamic models.  

The commercial software WAMIT (v6.1s) was used to compute both the linear and weakly nonlinear 
hydrodynamic loads and unrestrained motions for a single cylinder and an array with four cylinders. 
This software solves the hydrodynamic problem in the frequency domain and a description of the 
methods which are used is given in Sections 3 and 4 respectively.  

The generalisation of the second-order theory to the case of wave-body interactions with irregular 
waves requires the definition of bi-chromatic wave components and the solution is obtained in terms 
of the sum and difference frequency components of the usual hydrodynamic quantities. The second-
order excitations forces are obtained as the sum of the force quadratic transfer functions (QTF) in the 
sum- and difference-frequency as given by Equation (67). 

For the single truncated cylinder the second-order excitation force components associated with most 
regular waves are much smaller than the first-order excitation force component in surge and pitch. In 
heave the second order components are high at the wave periods close to resonance. The unrestrained 
motions are small and dominated by the first-order component for all modes of motion. However, for 
the steepest wave (with period equal to 10.25s and wave height equal to 6m) the second-order 
component was found to be of the same importance as the first-order.  

Similar results were found for the single truncated cylinder excited by irregular waves. The excitation 
forces and unrestrained motions were computed for a PM spectrum with significant wave height of 
2.5m (and Tp=7.9s) and it was found that the first-order component of the excitation force are 
dominant for both surge and pitch modes. In heave, the second-order component has higher values 
with a non negligible contribution for the total excitation force. The unrestrained motions were small 
with the first-order component being dominant for heave and pitch. In surge, the slowly varying drift 
motion associated with the difference frequency component was observed. 
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For the array with four cylinders an increase of the peak values associated with the sum-frequency 
force QTF component was found whereas a decrease was found for the difference-frequency 
component. A sharp increase in the value of the absolute value of the sum-frequency force QTF is 
found for wave periods close to 7.5s for all modes of motion except heave. When comparing with the 
single truncated cylinder, there was found to be an increase in the second-order excitation force 
component in surge and heave for the front cylinder (1) in the array. The unrestrained motions of the 
cylinders in the array are dominated by the first-order component, except for surge and sway where 
the slowly drift motion associated with the difference frequency component is observed. 

The weakly nonlinear results obtained in the present report for the isolated cylinder and the array with 
four cylinders are suitable for comparisons with the fully nonlinear hydrodynamic approach to be 
envisaged in WG1 WP1 D9 and WG1 WP1 D10. A further investigation to evaluate the importance of 
second-order components associated with more realistic setups for which the cylinders are restrained 
through a PTO system and mooring arrangement should be pursued. Such comparisons for the fully 
nonlinear case will be performed in WG1 WP1 D11 and WG1 WP1 D12 for a single and array of four 
cylinders respectively. Further comparisons with experimental results from WG2 WP1 and WG2 WP1 
will require additional geometries to be modelled, thus it is recommended (as proposed in WG0 D1) 
that the linear, second-order and fully nonlinear simulations are firstly compared for the geometry 
described in this report to allow preliminary findings to taken (verification exercise) regarding the 
particular input settings to test experimentally.  
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NOMENCLATURE 

 
Angular displacement vector between the body fixed and the inertial 
coordinate systems. 

Angle of incidence of the incident wave. 

Random phase uniformly distributed between [0, 2 π] associated with the 
incident wave. 

Free-surface elevation. 

Wavelength of the incident wave. 

Linear displacement vector between the body and the inertial coordinate 
systems. 

Sum and difference frequency displacement vector. 

Density of the fluid. 

Partition radius. 

Inner partition radius. 

Velocity potential. 

First order velocity potential. 

Second order velocity potential. 

Sum(+) and difference(-) frequency velocity potential. 

Velocity potential of the diffracted wave. 

Velocity potential of the incident wave. 

Velocity potential of the radiated wave. 

Velocity potential of the scattered wave. 

/ / Sum and difference frequency potential velocity associated with the incident, 
diffracted and radiated wave. 

Angular velocity of the floating structure 

Angular frequency of the incident wave. 

Sum and difference angular frequency associated with two components of an 
incident wave spectrum. 

A Added mass matrix. 

a Wave amplitude. 

B Hydrodynamic damping matrix. 

C Hydrostatic stiffness matrix. 

/ Total hydrodynamic force / moment. 
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/ Total excitation force / moment. 

/ First-order excitation force / moment. 

/ Second-order excitation force / moment. 

/ First-order radiation force / moment. 

/ Second-order radiation force / moment. 

/ First-order hydrostatic force / moment. 

/ Second-order hydrostatic force / moment. 

/ Second-order potential force / moment.  

Second-order quadratic force / moment. 

Second-order force force / moment due to the incident wave. 

Second-order force force / moment due to the diffracted wave. 

Sum(+) and difference(-) frequency force quadratic transfer functions (QTFs). 

g Gravitational constant. 

H Second-order approximation of the rotation matrix between the body fixed and 
global coordinate systems. 

I Inertia matrix (at the principal axis). ??? Check. 

k Wave number of the incident wave. 

M Mass matrix. 

Normal to the wetted profile pointing out of the fluid volume (and hence into 
the body) 

p Fluid pressure. 

(QF) Forcing function associated with the second-order free-surface boundary 
condition. 

(QB) Forcing function associated with the second-order boundary condition at the 
solid boundaries of the floating structure. 

Position vector. 

t Time variable. 

T Wave period. 

 

T Rotation matrix between the body fixed and the global coordinate system. 

Velocity of the floating structure. 

Velocity of the origin of the body fixed CS 
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Velocity of the fluid vector. 

Complex amplitude vector of the excitation forces. 

Cartesian coordinate the global (inertial) reference frame. 

Cartesian coordinates in the body fixed coordinate system. 
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APPENDIX A: SUM- AND DIFFERENCE- FORCE QTFS FOR THE SINGLE 
TRUNCATED CYLINDER 

The tables in this appendix present the sum- and difference- frequency force QTFs ( , ) computed 
for the truncated cylinder in surge, heave and pitch modes associated with the sixteen frequency 
components of the Pierson-Moskowitz spectra with Hs=2.5m considered in Section 6.2.2.  

Each table is divided by a shaded diagonal to which the top side represents the real part of the complex 
force QTF whereas the bottom part of the table represents the imaginary part. 

Note that the sum-frequency component of the force QTF is symmetric satisfying the relation: 
, whereas the difference-frequency force QTFs are complex conjugate 

symmetric satisfying the relation: .

The components of the diagonal correspond to the to the sum- and difference- force QTFs at double 
and zero frequency and are shown in a separate table. 

 

Real part: 

T [s] 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55 4.35 4.17 

11.11 * 11.20 27.58 46.09 77.66 42.74 -3.69 -7.03 -5.25 -3.62 -2.01 -0.82 0.35 1.64 2.59 3.03 

10.00 -20.55 * -14.54 -25.70 -85.50 -186.80 -119.40 -85.48 -73.57 -69.39 -68.32 -67.99 -66.48 -64.64 -62.58 -59.27 

9.09 4.49 -53.56 * 10.14 9.06 -16.98 -19.03 -15.90 -15.30 -16.27 -17.94 -18.80 -19.15 -19.36 -19.73 -20.07 

8.33 3.99 -78.58 -11.27 * 27.74 3.80 -7.45 -7.19 -7.82 -9.62 -11.48 -13.26 -15.74 -17.47 -18.90 -20.73 

7.69 -20.15 -118.70 -22.84 -21.70 * 18.61 4.38 3.51 2.42 0.39 -1.61 -3.58 -3.20 -4.61 -7.24 -9.79 

7.14 -87.22 -22.80 -23.53 -34.81 -48.53 * -7.20 -4.16 0.02 4.59 9.57 14.04 19.06 24.99 30.67 33.42 

6.67 -60.24 43.76 -4.77 -16.42 -29.48 -50.66 * -13.88 -8.78 -3.42 2.20 7.95 11.86 17.54 24.27 29.06 

6.25 -39.33 38.27 1.00 -7.38 -17.68 -37.68 -30.88 * -7.10 -2.92 1.16 5.52 8.66 12.19 16.43 20.50 

5.88 -29.30 28.60 3.36 -2.27 -8.99 -27.53 -25.24 -21.95 * 0.13 3.11 6.73 9.25 11.66 14.78 17.43 

5.56 -23.13 21.29 5.34 1.91 -0.85 -17.90 -20.58 -19.21 -19.03 * 6.44 9.70 11.39 13.49 16.08 16.82 

5.26 -18.46 14.78 7.62 6.48 7.18 -8.28 -16.27 -16.30 -17.27 -19.09 * 12.96 14.23 16.36 17.25 18.13 

5.00 -14.49 11.09 10.13 10.12 16.30 0.21 -12.43 -13.75 -15.22 -17.74 -20.90 * 16.66 18.46 19.81 23.16 

4.76 -11.14 8.43 11.56 13.85 23.32 11.34 -7.97 -11.89 -13.99 -16.85 -20.12 -24.05 * 21.16 25.61 25.01 

4.55 -8.26 5.81 12.36 17.02 28.46 19.64 -3.18 -8.68 -11.14 -14.03 -18.40 -21.80 -25.95 * 26.48 31.43 

4.35 -5.48 0.54 12.94 18.98 32.33 25.69 1.13 -4.65 -7.47 -11.09 -15.61 -19.07 -22.64 -25.51 * 36.23 

4.17 -3.35 -5.22 13.03 19.35 35.65 31.19 3.40 -3.33 -6.54 -9.38 -11.22 -13.40 -19.39 -24.10 -25.41 *

Imaginary part: 

Table 9: Sum-frequency force QTFs (f+) in surge for the single truncated cylinder. 
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Real part: 

T [s] 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55 4.35 4.17 

11.11 * -3.23 -0.29 -0.99 -6.82 -17.28 -8.87 -3.72 -0.60 2.23 5.49 8.75 12.59 16.07 17.02 19.71 

10.00 2.52 * -1.68 0.83 5.09 3.91 0.25 0.75 2.13 4.16 7.06 12.60 16.91 25.40 28.32 28.21 

9.09 -1.89 0.23 * -2.05 -5.32 -9.15 -4.38 -1.95 -0.35 1.47 4.05 8.09 13.05 19.04 24.34 30.16 

8.33 -5.85 1.57 -1.37 * -6.64 -11.11 -5.50 -2.53 -0.49 1.81 5.01 9.52 15.55 22.30 30.69 39.69 

7.69 -10.98 1.88 -2.67 -1.85 * -15.47 -9.73 -6.76 -4.99 -3.15 -0.50 3.21 8.67 14.77 24.32 31.22 

7.14 -0.79 -2.00 4.12 5.44 7.45 * -16.73 -15.07 -15.72 -17.82 -20.96 -25.01 -28.83 -34.69 -39.81 -45.76 

6.67 6.92 3.46 8.14 9.66 12.03 4.87 * -10.30 -10.49 -12.01 -14.66 -18.38 -22.44 -28.47 -34.69 -41.45 

6.25 6.96 9.73 9.39 10.76 13.58 6.06 0.07 * -7.45 -7.91 -9.12 -11.00 -13.20 -16.51 -20.06 -23.72 

5.88 6.89 15.72 11.35 12.85 16.72 8.58 0.50 -0.17 * -6.52 -6.95 -7.78 -8.89 -10.66 -12.74 -14.03 

5.56 7.25 21.80 14.09 16.10 21.86 13.09 1.90 0.32 0.06 * -6.28 -6.54 -7.01 -7.86 -9.01 -9.55 

5.26 7.70 28.26 17.45 20.35 28.97 19.84 4.34 1.64 0.83 0.34 * -6.25 -6.33 -6.59 -7.04 -7.46 

5.00 7.67 32.19 20.60 25.00 37.64 28.54 7.55 3.51 2.26 1.35 0.57 * -6.22 -6.10 -6.12 -6.18 

4.76 7.48 35.70 23.79 30.21 47.66 39.09 11.54 5.87 4.20 3.01 1.78 0.70 * -6.07 -5.80 -5.60 

4.55 5.15 38.03 25.39 34.10 58.36 51.76 16.13 8.46 6.27 4.86 3.42 1.91 0.69 * -5.85 -5.55 

4.35 3.52 33.07 25.05 37.26 69.23 64.57 18.47 9.15 7.35 6.32 5.02 3.49 1.96 0.64 * -5.68 

4.17 2.47 36.22 24.42 39.06 80.48 78.55 25.38 11.59 8.08 7.21 6.35 5.02 3.44 1.85 0.52 *

Imaginary part: 

Table 10: Difference frequency force QTFs (f-)in surge for the single truncated cylinder.  

 
Real part: 

T [s] 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55 4.35 4.17 

11.11 * -51.98 -7.73 -0.63 1.99 -3.12 -3.49 -1.99 -1.03 -0.43 -0.07 0.15 0.26 0.30 0.29 0.26 

10.00 -44.23 * 18.48 10.85 7.81 -1.01 -2.01 -0.64 0.21 0.72 0.98 1.12 1.12 1.02 0.90 0.73 

9.09 -3.02 19.20 * 6.91 5.72 -3.62 -2.89 -0.53 0.79 1.53 1.92 2.06 2.03 1.88 1.63 1.33 

8.33 -2.81 4.14 -4.34 * 5.30 -5.49 -1.85 1.76 3.56 4.49 4.89 4.95 4.74 4.31 3.75 3.09 

7.69 -5.73 -3.99 -9.03 -12.47 * -7.10 3.82 9.28 11.78 13.05 13.53 13.42 12.82 11.87 10.58 9.13 

7.14 -7.17 -6.65 -8.34 -7.99 -4.20 * 9.65 11.55 13.13 14.55 15.67 16.37 16.54 16.17 15.42 14.39 

6.67 -2.44 -1.72 -1.18 0.83 2.95 -8.41 * -0.26 0.51 1.84 3.26 4.52 5.50 6.11 6.47 6.61 

6.25 -0.83 -0.30 0.76 2.65 2.90 -12.20 -13.28 * -3.41 -2.02 -0.49 0.92 2.05 2.85 3.38 3.73 

5.88 -0.24 0.23 1.46 3.29 2.90 -13.40 -13.52 -9.09 * -3.53 -1.90 -0.35 0.88 1.76 2.34 2.72 

5.56 0.05 0.55 1.83 3.71 3.27 -13.43 -13.60 -9.05 -5.47 * -2.70 -1.06 0.28 1.23 1.84 2.20 

5.26 0.21 0.78 2.06 3.97 3.78 -12.85 -13.47 -9.15 -5.69 -2.52 * -1.50 -0.12 0.87 1.48 1.83 

5.00 0.29 0.90 2.16 4.12 4.22 -11.87 -13.10 -9.21 -6.09 -3.18 -0.13 * -0.35 0.61 1.15 1.46 

4.76 0.34 0.98 2.20 4.14 4.61 -10.60 -12.45 -9.09 -6.42 -3.94 -1.27 1.71 * 0.42 0.86 1.05 

4.55 0.36 1.01 2.16 4.06 4.94 -9.04 -11.52 -8.77 -6.54 -4.53 -2.36 0.12 2.93 * 0.44 0.48 

4.35 0.35 0.99 2.07 3.93 5.16 -7.35 -10.32 -8.13 -6.33 -4.76 -3.11 -1.17 1.09 3.55 * -0.44 

4.17 0.33 0.95 1.94 3.75 5.28 -5.58 -8.92 -7.25 -5.84 -4.62 -3.38 -1.96 -0.27 1.65 3.64 *

Imaginary part: 

Table 11: Sum-frequency force QTFs (f+) in heave for the single truncated cylinder. 



Document No.: 104327/BR/04 WG1 WP1 D8 Weakly Nonlinear Hydrodynamics of 
Freely Floating WECs 

Issue:  1.0 FINAL 

Garrad Hassan & 
Partners Ltd 

76 
Not to be disclosed other than in line with the terms of the technology contract 

Real part: 

T [s] 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55 4.35 4.17 

11.11 * -20.49 -4.13 -1.55 -0.22 -0.52 -1.63 -1.85 -1.91 -1.91 -1.95 -1.44 -2.05 -1.48 -1.14 -1.44 

10.00 -22.35 * 8.44 2.78 1.98 -0.61 -3.33 -3.72 -3.69 -3.54 -3.12 -5.16 0.15 -5.70 0.01 -2.35 

9.09 -1.43 -4.49 * 1.94 4.16 0.37 -4.31 -4.82 -4.76 -4.64 -4.46 -5.36 -3.42 -5.28 -2.74 -3.93 

8.33 -0.56 -1.42 -0.34 * 10.39 4.15 -5.56 -6.78 -6.73 -6.55 -6.44 -7.10 -6.03 -7.05 -5.18 -6.76 

7.69 -0.76 -1.58 -2.83 -4.57 * 24.37 1.42 -3.60 -4.53 -4.59 -4.64 -5.21 -5.36 -5.39 -6.50 -6.93 

7.14 -2.30 -4.57 -9.36 -18.38 -32.95 * 37.58 24.95 20.13 18.14 17.22 16.15 15.57 15.58 11.18 11.82 

6.67 -1.99 -3.52 -7.12 -14.37 -31.60 -25.14 * 24.06 19.83 17.69 16.64 15.58 15.67 16.16 12.26 15.69 

6.25 -1.62 -2.79 -5.46 -10.93 -25.08 -24.44 -4.42 * 14.66 12.76 11.74 10.73 10.98 11.69 8.63 10.89 

5.88 -1.43 -2.55 -4.79 -9.51 -21.90 -22.20 -4.79 -0.74 * 10.08 9.03 7.99 8.27 8.69 6.89 6.89 

5.56 -1.28 -2.41 -4.45 -8.85 -20.35 -20.61 -4.47 -0.70 0.01 * 7.52 6.50 6.57 6.49 5.57 4.95 

5.26 -1.17 -2.77 -4.34 -8.60 -19.74 -19.93 -4.31 -0.65 0.10 0.18 * 5.81 5.22 4.67 4.30 3.78 

5.00 -0.95 -0.05 -3.47 -7.62 -18.44 -18.66 -3.58 -0.20 0.31 0.19 0.04 * 4.47 3.52 3.05 3.17 

4.76 -1.11 -2.90 -3.52 -7.72 -18.85 -20.40 -5.05 -1.06 0.01 0.43 0.50 0.38 * 3.22 3.12 2.31 

4.55 -0.28 -1.25 -2.70 -5.92 -16.04 -17.41 -3.29 0.03 0.84 1.11 1.10 0.22 0.14 * 2.72 2.22 

4.35 -0.77 0.90 -1.93 -5.89 -16.05 -19.46 -4.69 -0.07 1.21 1.45 1.10 0.77 0.06 0.12 * 1.51 

4.17 -0.38 -3.72 -2.65 -4.18 -11.99 -17.00 -5.55 -2.55 -1.69 -0.63 0.36 0.11 -0.14 0.35 0.38 *

Imaginary part: 

Table 12: Difference-frequency force QTFs (f-) in heave for the single truncated cylinder. 

 
Real part: 

T [s] 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55 4.35 4.17 

11.11 * 14.86 219.40 333.60 308.40 -568.50 -611.40 -435.00 -333.90 -279.00 -242.10 -218.20 -197.50 -176.10 -157.20 -142.40

10.00 -202.20 * -561.70 -927.40 -1317.00 574.60 1273.00 998.90 765.70 593.00 455.70 342.90 259.60 185.50 114.10 56.15 

9.09 -126.90 63.74 * 74.64 245.70 521.50 316.20 192.60 126.20 75.91 31.11 1.55 -19.67 -38.48 -58.78 -78.46 

8.33 -294.70 358.70 212.80 * 378.70 434.00 211.40 126.20 77.12 33.08 -5.04 -39.67 -82.15 -114.90 -144.10 -178.30

7.69 -754.10 1438.00 322.60 158.10 * 519.30 286.90 209.10 159.90 112.40 70.06 30.06 19.83 -13.54 -63.03 -110.70

7.14 -853.70 2539.00 58.20 -144.50 -260.30 * 228.70 185.40 187.70 211.20 249.80 287.20 331.90 385.00 433.40 444.60 

6.67 -229.90 1154.00 -130.60 -177.20 -234.60 -501.70 * 17.34 43.29 88.57 147.10 211.90 254.30 317.00 390.90 438.80 

6.25 -65.43 600.10 -110.80 -112.50 -143.60 -380.20 -354.90 * 17.51 53.71 98.08 150.90 189.60 231.40 278.90 322.80 

5.88 -24.05 399.10 -78.10 -60.13 -60.10 -267.80 -281.20 -231.60 * 59.09 90.01 135.20 168.90 198.90 234.10 262.10 

5.56 -8.93 314.80 -45.04 -13.79 25.00 -153.00 -217.30 -189.30 -164.80 * 104.20 143.20 166.20 192.30 221.70 224.40 

5.26 1.74 264.60 -8.95 38.37 112.90 -34.32 -158.60 -148.70 -136.80 -131.00 * 159.10 173.20 198.00 203.60 206.00 

5.00 11.40 253.90 29.49 80.22 216.60 72.69 -107.50 -116.70 -111.70 -111.90 -117.40 * 179.30 195.00 202.50 234.60 

4.76 19.49 256.90 55.30 124.20 295.90 212.80 -50.02 -96.22 -102.80 -108.50 -112.40 -124.80 * 203.70 247.00 222.90 

4.55 25.53 259.90 74.72 162.60 352.70 317.90 11.90 -59.88 -76.44 -86.52 -105.70 -107.20 -121.50 * 229.70 276.30 

4.35 32.92 229.40 92.28 187.10 393.10 396.30 70.62 -11.04 -37.86 -63.05 -89.55 -92.84 -94.71 -93.48 * 310.20 

4.17 34.13 189.70 105.10 192.40 427.90 470.30 106.60 7.54 -31.22 -53.40 -50.11 -40.24 -73.70 -91.79 -77.72 *

Imaginary part: 

Table 13: Sum-frequency force QTFs (f+) in pitch for the single truncated cylinder. 
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Real part: 

T [s] 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55 4.35 4.17 

11.11 * 17.98 -0.89 -41.72 -311.50 -833.50 -494.90 -294.40 -200.00 -140.60 -91.34 -47.63 -2.56 38.59 59.94 93.43 

10.00 -104.50 * 299.40 657.80 1592.00 1724.00 463.40 158.50 102.30 109.70 141.40 197.30 247.70 327.90 368.90 385.60 

9.09 -170.70 254.00 * 50.54 160.70 291.50 155.70 103.10 92.02 98.81 117.90 150.30 190.50 238.10 280.60 326.50 

8.33 -320.80 456.70 74.99 * 55.43 92.99 56.23 46.67 53.16 70.37 98.45 137.90 188.20 242.70 307.00 374.60 

7.69 -554.70 373.80 135.40 36.39 * 7.92 -4.71 -6.53 -2.44 9.00 30.77 62.98 107.40 153.90 219.30 262.60 

7.14 -114.60 -1393.00 -46.74 -5.00 15.35 * -89.13 -110.60 -140.30 -176.60 -216.80 -259.50 -298.80 -351.70 -404.20 -468.50

6.67 246.20 -1394.00 -118.20 -13.55 43.37 30.85 * -94.61 -111.80 -138.00 -171.20 -209.70 -248.70 -298.70 -350.50 -407.40

6.25 236.90 -979.90 -78.17 14.42 78.91 50.77 -1.49 * -88.36 -100.50 -117.80 -138.60 -159.80 -186.50 -214.20 -242.80

5.88 205.30 -718.40 -34.57 49.18 125.30 81.28 -1.25 -6.16 * -89.67 -98.48 -109.30 -120.50 -134.30 -149.20 -159.10

5.56 183.50 -538.60 8.50 90.07 185.60 128.50 7.43 -7.12 -4.59 * -94.56 -100.00 -105.50 -111.90 -119.20 -122.20

5.26 169.20 -396.50 52.58 137.00 260.10 194.60 26.03 -0.64 -3.16 -1.90 * -99.70 -102.00 -103.90 -105.90 -107.00

5.00 156.20 -291.50 93.67 186.30 345.10 276.40 52.62 11.86 4.34 1.76 0.29 * -103.10 -102.40 -101.40 -99.79 

4.76 144.70 -199.80 134.50 239.30 438.80 370.30 85.54 28.96 16.43 10.55 5.17 1.08 * -103.60 -101.00 -97.78 

4.55 119.20 -121.10 164.90 284.60 537.30 475.70 121.30 47.57 29.89 21.13 13.05 5.19 0.20 * -102.40 -99.04 

4.35 99.19 -97.31 182.40 326.80 638.90 579.10 140.30 53.20 36.92 29.45 20.92 11.48 3.26 -1.49 * -101.00

4.17 83.84 -15.11 198.40 361.40 746.10 687.20 184.70 67.42 40.52 33.83 27.26 17.82 7.83 -0.03 -3.60 *

Imaginary part: 

Table 14: Difference-frequency force QTFs (f-) in pitch for the single truncated cylinder. 

 
Surge Heave Pitch 

Sum-freq. Diff-freq. Sum-freq. Diff-freq. Sum-freq. Diff-freq. 

T [s] real imag real imag real imag real imag real imag real imag 

11.11 25.80 10.22 -0.05 0.00 24.78 -4.02 12.02 0.00 217.30 9.92 5.02 0.00 

10.00 -20.85 -71.46 -5.15 0.00 17.98 184.80 78.63 3.72 -618.30 -177.70 241.50 0.00 

9.09 4.47 -9.62 -1.39 0.00 7.59 -1.61 2.64 0.00 -2.61 159.20 31.32 0.00 

8.33 21.07 -10.38 -2.90 0.00 7.48 -7.22 5.62 0.00 203.70 180.10 29.57 0.00 

7.69 39.55 -32.08 -10.58 0.00 0.19 -16.69 27.42 0.00 545.60 58.46 26.04 0.00 

7.14 4.06 -68.11 -21.59 0.00 2.99 -0.21 61.99 0.00 449.20 -565.60 -67.47 0.00 

6.67 -17.60 -39.36 -12.18 0.00 1.55 -13.21 33.59 0.00 35.97 -450.20 -89.95 0.00 

6.25 -11.19 -25.24 -7.94 0.00 -3.69 -10.09 19.00 0.00 -2.85 -282.70 -84.09 0.00 

5.88 -3.43 -20.44 -6.58 0.00 -4.47 -6.22 12.81 0.00 31.74 -195.20 -84.89 0.00 

5.56 3.65 -19.29 -6.22 0.00 -3.92 -2.91 9.53 0.00 79.97 -146.30 -90.16 0.00 

5.26 9.52 -20.80 -6.22 0.00 -2.75 -0.05 7.47 0.00 123.50 -127.10 -96.78 0.00 

5.00 16.29 -24.60 -6.28 0.00 -1.40 2.26 6.01 0.00 184.40 -137.60 -102.10 0.00 

4.76 20.95 -26.32 -6.24 0.00 -0.23 3.95 4.87 0.00 215.70 -127.40 -104.50 0.00 

4.55 24.82 -28.60 -6.08 0.00 0.31 4.88 3.93 0.00 228.30 -131.90 -104.20 0.00 

4.35 33.04 -29.99 -5.88 0.00 -0.20 5.16 3.14 0.00 289.10 -131.70 -102.80 0.00 

4.17 36.85 -29.24 -5.75 0.00 -1.83 4.87 2.46 0.00 292.70 -119.10 -102.10 0.00 

Table 15: Sum- and difference- force QTFs at double and zero frequency correspondent to the 
diagonals of Table 9 to Table 14 for the single truncated cylinder. 
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