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Abstract:
WG3 WP6 D5 aims to present the methodology used to describe the fundamental device concept (FDC) tidal 

arrays in numerical models created for the M2 tidal constituent.  The report first introduces the two-dimensional 

Shallow Water Equations (SWEs) and the chosen numerical method (discontinuous Galerkin finite element 

method) used to solve these equations.  The methodology is then explained for coupling Linear Momentum 

Actuator Disc Theory (LMADT) to the two-dimensional hydrodynamic model DG-ADCIRC by means of including a 

line sink of momentum within the discontinuous Galerkin scheme.  The verification of the algorithm is undertaken 

for a number of problems where an array of tidal devices is located in an idealised channel, with different 

configurations and problem settings.  Lastly, preliminary results are given for the Anglesey Skerries, using the 

modified DGADCIRC code that uses LMADT to calculate the relevant line sink of momentum in the solution 

domain.

Context:
The Performance Assessment of Wave and Tidal Array Systems (PerAWaT) project, launched in October 2009 

with £8m of ETI investment. The project delivered validated, commercial software tools capable of significantly 

reducing the levels of uncertainty associated with predicting the energy yield of major wave and tidal stream energy 

arrays.  It also produced information that will help reduce commercial risk of future large scale wave and tidal array 

developments.

The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for 

Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed ‘as 

is’ and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the 

maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not 

be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, 

indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and 

lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement 

to the contrary contained on the face of this document, the Energy Technologies Institute confirms that the authors of the document have 

consented to its publication by the Energy Technologies Institute.

This document was prepared for the ETI by third parties under contract to the ETI. The ETI is making these 

documents and data available to the public to inform the debate on low carbon energy innovation and deployment. 
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Executive Summary 

WG3 WP6 D5 aims to present the methodology used to describe the fundamental 

device concept (FDC) tidal arrays in numerical models created for the M2 tidal 

constituent. The report first introduces the two-dimensional Shallow Water Equations 

(SWEs) and the chosen numerical method (discontinuous Galerkin finite element 

method) used to solve these equations. The methodology is then explained for 

coupling Linear Momentum Actuator Disc Theory (LMADT) to the two-dimensional 

hydrodynamic model DG-ADCIRC by means of including a line sink of momentum 

within the discontinuous Galerkin scheme. The verification of the algorithm is 

undertaken for a number of problems where an array of tidal devices is located in an 

idealised channel, with different configurations and problem settings. Lastly, 

preliminary results are given for the Anglesey Skerries, using the modified DG-

ADCIRC code that uses LMADT to calculate the relevant line sink of momentum in 

the solution domain. 
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1.  Introduction 

Acceptance Criteria 

Table 1 lists the acceptance criteria for the present deliverable. 

Deliverable Acceptance criteria Location in report 

WG3 WP6 D5: 

Report on inclusion of 

FDC tidal arrays into 

the numerical models 

developed in WG3 

WP6 M2. 

Report describes the 

methodology used to 

incorporate tidal arrays into 

the 2D numerical model, 

including all algorithms and 

assumptions. 

- Numerical approach: 

pp: 4-12, 

- Methodology for 

including tidal arrays: 

pp: 13-29, 

- Application to 2D 

shallow water model of 

candidate site: 

pp: 30 – 40. 

Table 1 Acceptance criteria 

 

The report gives a detailed description of the discontinuous Galerkin method, which 

has been selected for solving the 2D shallow water equations (SWEs). A brief 

summary of the methodologies for including the effects of tidal devices in two-

dimensional hydrodynamic models is given herein. Section 4 explains linear 

momentum actuator disc theory (LMADT), which is used to represent the tidal 

devices in the hydrodynamic model. Section 5 provides example application of the 

line sink of momentum algorithm to turbine fences located in the Anglesey Skerries. 

Section 6 provides the conclusions. Section 7 introduces the preliminary results for 

the Pentland Firth model using enhanced bed friction methodology. 
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2. Governing Equations 

The ocean tides are modelled using the long wave equations, commonly known as the 

shallow water equations (SWEs). The flow is assumed to be nearly horizontal, thus 

the acceleration of the particles in the vertical direction is negligible (see e.g., 

Falconer, 1993). By defining the system as nearly horizontal, the pressure distribution 

in the vertical direction is assumed hydrostatic (see e.g., Falconer, 1993). The 

established governing equations can be expressed as a time dependent, two-

dimensional system of non-linear partial differential equations of hyperbolic type 

(Toro, 2001), which can be shown as, 

  

€ 

∂ζ
∂t

+
∂
∂x

Hu( ) +
∂
∂y

Hv( ) = 0, 2.1 

  

€ 

∂
∂t

uH( ) +
∂
∂x

Hu2 +
1
2
g H 2 − h2( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

∂
∂y

Huv( ) = gζ∂h
∂x

−τuH + fv + Fx , 2.2 

  

€ 

∂
∂t

vH( ) +
∂
∂x

Huv( ) +
∂
∂y

Hv 2 +
1
2
g H 2 − h2( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = gζ

∂h
∂y

−τvH − fu+ Fy . 2.3 

Equation 2.1 is the mass conservation equation, where 

€ 

ζ  represents the water 

elevation above a certain datum, H is the total depth of the water column (

€ 

H = ζ + h), 

which is equivalent to the sum of free surface elevation (

€ 

ζ) and the bathymetric depth 

of the water column below the geoid (h). The variables u and v represent the depth-

averaged velocities in x- and y- directions. Equation 2.2 and Equation 2.3 are the 

momentum conservation equations in x- and y- directions respectively, where g is the 

gravitational acceleration, 

€ 

τ  is the bottom friction factor, f is the Coriolis force, and 

Fx and Fy represent additional forces in the system such as tidal potential forces, wind 

or wave radiation stresses, etc.  

The above equations can be rewritten in divergence form as shown in Equation 2.4, 

  

€ 

∂u
∂t

+∇⋅ F u( ) = s u( ), 2.4 

where u is vector of conserved variables, 
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€ 

u = ζ,uH ,vH[ ]T , 2.5 

F is the flux vector, 

  

€ 

F = fx ,f y[ ] =

uH vH

Hu2 +
1
2
g H 2 − h2( ) Huv

Huv Hv 2 +
1
2
g H 2 − h2( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 2.6 

and s is the source (or sink) term vector, 

  

€ 

s = 0,gζ∂h
∂x

−τuH + fv + Fx ,gζ∂h
∂y

−τvH − fu+ Fx
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T

. 2.7 

In this form, it is seen that the two-dimensional flux vector defines the transport of 

  

€ 

u x,t( ). In order to solve the equation system, appropriate initial and boundary 

conditions must also be supplied. Section 3 describes the discontinuous Galerkin 

method, which is used to solve the SWEs numerically. 

3. Discontinuous Galerkin Method 

Numerical solutions to the hyperbolic shallow water equations have been obtained 

over the years using different numerical schemes (see e.g. Abbott, 1978; Vreugdenhil, 

1994; Wei Yan, 1992). Selection of the numerical scheme is of importance, and in 

particular affects the necessary level of discretization, which in turn affects the 

accuracy of the solution obtained (Garcia-Navarro et al., 2008). In the literature, the 

most commonly used numerical schemes for solving the SWEs are the finite 

difference method (FD), finite element methods (FE), and finite volume method (FV). 

In WG3 WP6, the discontinuous Galerkin (DG) method has been chosen in order to 

solve the SWEs. It is a method, which has characteristics of both FE and FV methods 

(Cockburn and Shu, 1998). While naturally inheriting some features from these 

methods, (e.g., compatibility with unstructured triangular and/or quadrilateral 

elements, or application of boundary conditions through the use of numerical fluxes 

[Draper, 2011; Ferrer, 2012]), the main advantage of using the DG method is its 
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ability to conserve mass locally (Blain and Massey, 2005). This is achieved, as the 

DG formulation imposes the weak formulation of the governing equations 

individually for each element. Draper (2011) discusses that conserving mass flux is of 

importance in order to represent the relevant momentum sink that occurs with respect 

to the existence of tidal devices in the area being modelled. Introducing a 

discontinuity in the solution, such as a line sink of momentum, is also easy to 

implement in a piece-wise method such as the DG method.  

 

Following the discussions above, the first step in space discretisation by the DG 

method is to divide the flow domain, 

€ 

Ω into Ne number of non-overlapping but not 

necessarily conforming elements, e each with an elemental domain of 

€ 

Ωe  and 

elemental boundary of 

€ 

∂Ωe , 

    

€ 

Ω = Ωe
e=1

Ne

 . 3.1 

Following the standard Galerkin method, a weak formulation of the governing 

equation is required. Multiplying Equation 2.4 with a test function 

€ 

φh ∈Vh  and 

integrating over each element we obtain, 

  

€ 

∂u
∂t

,φh
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Ωe

+ ∇⋅ F u( ),φh( )
Ωe

= s u( ),φh( )
Ωe

. 3.2 

The test function 

€ 

φh  belongs to 

€ 

Vh  which is a discrete space of piecewise functions 

that are differentiable over an element, while allowing discontinuities at element 

boundaries, 

  

€ 

Vh = φh ∈L
2 Ω( ){ :φhΩe ∈P

k Ωe( ),∀Ωe}. 3.3 

In Equation 3.3, 

€ 

Pk Ωe( ) indicates the space of polynomials of order k for elements 

with linear elemental mappings. The next step in writing the weak DG formulation is 

to substitute the exact solution u by an approximate solution uh. Applying the 

divergence theorem (Gauss’ theorem) to the advection term of the equation obtained, 

Equation 3.2 becomes, 
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€ 

∂uh
∂t

,φh
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Ωe

− ∇φh ,F uh( )( )
Ωe

+ F uh
-( )⋅ n,φh

−

∂Ωe
− s uh( ),φh( )

Ωe
= 0. 3.4 

In Equation 3.4,   

€ 

n = nx ,ny[ ]
T
 is the outward normal vector to the element boundary 

€ 

∂Ωe , and the terms 

€ 

uh
-  and 

€ 

φh
−  are the traces of 

€ 

uh  and 

€ 

φh  respectively (Houston et 

al., 2002; Tassi et al., 2007). The trace terms are associated with the discontinuity 

along the elemental boundaries, where dual values for discrete solution 

€ 

uh and the 

flux 

€ 

F uh( ) are possible while the functions defined within 

€ 

Vh  are continuous on the 

interior of each element (Karniadakis and Sherwin, 2005). Equation 3.4 can be solved 

by replacing the flux term on the boundary by a numerical flux of choice   

€ 

F
∧

uh
int ,uh

ext( ), 

which depends on the trace values of the discrete solution 

€ 

uh  on the interior   

€ 

uh
int( ) and 

exterior 

€ 

uh
ext( )  of the element (Figure 1). Substituting the numerical flux in Equation 

3.4 gives, 

Equation 3.5 shows that the boundary flux is normal to the element edges, which 

means that a local Riemann problem can be solved for the given interior   

€ 

uh
int( )  and 

exterior fluxes 

€ 

uh
ext( ) . 

 

Figure 1 Representation of a pair of neighbouring elements. The element e has a common edge i 

(shown as red line), where ni is the normal to the edge, uint is the solution on the egde i when 

!

!"

  

€ 

∂uh
∂t

,φh
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Ωe

− ∇φh ,F uh( )( )
Ωe

+ F
∧

uh
int ,uh

ext( )⋅ n,φh
−

∂Ωe

− s uh( ),φh( )
Ωe

= 0. 3.5 
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approaching from inside of element e and uext is the solution on the edge i when approaching from 

external to the edge (Kubatko et al., 2006). 

 

Any upwinding numerical flux method can be used in Equation 3.5. In the DG 

literature, the most commonly used numerical fluxes are: Roe’s average flux, Lax-

Friedrich flux, and HLL/HLLC flux. The verification test cases presented in this 

report utilise HLLC for its stability and efficiency.  

HLLC Flux 

Rewriting the numerical flux term given in Equation 3.5 using the elemental inner 

product expansion 
  

€ 

a,b
∂Ωe

≡ ab⋅ ndΓ
∂Ωe
∫ , we obtain,  

    

€ 

φh
int −φh

ext( )F
∧

uh
int ,uh

ext( )⋅ ndΓ

∫

⎫ 
⎬ 
⎭ 

⎧ 
⎨ 
⎩ 

Γ

∑  3.6 

where a single edge on an element is denoted as   

€ 

  and the set of all edges in the flow 

domain (including the domain boundary) is 

€ 

Γ ≡Ω∪∂Ω  . The set of interior edges is 

denoted as   

€ 

Γ int  and the exterior edges where the boundary conditions are applied is 

given as 

€ 

Γ ext ≡ Γ bc .  Since the numerical flux   

€ 

F
∧

uh
int ,uh

ext( ) is normal to the elemental 

boundary edge, a one-dimensional local Riemann problem can be solved for the 

fluxes when the trace values   

€ 

uh
int  and 

€ 

uh
ext  are imposed. The trace value of 

€ 

uh
ext  is 

dependent on the boundary condition 

€ 

uh
ext = ubc , which is applied at edges that belong 

to the flow domain,   

€ 

∈Γ bc. Considering that the flux is conservative, an 

approximation to   

€ 

uh
int

 can be obtained. In the conventional HLL method, the relations 

provided above are used to estimate wave speeds at the interior (sint) and exterior (sext) 

of the edge (Toro, 2001). The HLLC method requires estimation of an additional 

contact wave speed (s*) such that, 
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€ 

sint = u int − gH int qint ,

sext = u ext + gH ext qext ,

s* =
sintH ext u ext − u int( ) − sextH int u int − sint( )

H ext u ext − sext( ) −H int u int − sint( )

 
3.7 

where, 

  

€ 

q int,ext( ) =
H*( )

2
+ H*H int,ext( ) 2 H int,ext( )( )

2
  if H* > H int,ext( )

1                                                    if H* ≤ H int,ext( )

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

.

 3.8 

In Equation 3.7 

€ 

u  is the velocity normal to the edge, 

€ 

c = gH  is the celerity of a 

gravity wave, H is the total water depth, and q is the correction factor. The estimated 

wave speed for the contact wave s* is equivalent to   

€ 

u *  in exact Riemann solvers 

(Toro, 2001).  In the computation of the correction factor (Equation 3.8), the water 

depth on the contact wave is calculated assuming that the interior and exterior (left 

and right) waves are rarefaction waves (Toro, 2001), 

  

€ 

H* =
1
g
1
2

gH int + gH ext( ) +
1
4

u int − u ext( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

. 3.9 

After the wave speeds are estimated, the HLLC flux can be expressed as, 

  

€ 

F HLLC =

F int          sint < 0,
F*

int          sint ≤ 0 < s* ,
F*
ext          s* ≤ 0 ≤ sext ,

F ext          sext < 0,

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 3.10 

where,  

  

€ 

F*
int = F int + sint u*

int −uint( ),
F*
ext = F ext + sext u*

ext −uext( ).
 3.11 
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Equation 3.11 is used to calculate the fluxes related to the contact wave. The fluxes on 

the interior and exterior of the edge are given as   

€ 

F int = F uint( )  and 

€ 

F ext = F uext( ) , and 

the states   

€ 

u*
int  and   

€ 

u*
ext  are obtained by, 

  

€ 

u*
int,ext( ) = H int,ext( ) s int,ext( ) − u int,ext( )

s int,ext( ) − s*

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
s*

v int,ext( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
. 3.12 

Basis Function  

Cockburn and Shu (1998) explain that a suitable basis function with sufficient degrees 

of freedom may simplify the implementation of the DG method while improving the 

computational efficiency. By using the hierarchical and orthogonal basis function 

proposed by Dubiner (1998), high-order elements are constructed by means of adding 

terms to the lower-order elements (Kubatko et al., 2006). The basis function is 

obtained as a product of polynomials, which can be given as (Karniadakis and 

Sherwin, 2005), 

  

€ 

φpq ξ1,ξ2( ) = Pp
0 ,0 η1( ) 1−η22

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

p

Pq
2p+1,0 η2( )  3.13 

In Equation 3.13,   

€ 

PK
α ,β defines the Kth order Jacobi polynomial of weights α and β.  

€ 

ξ1 

and

€ 

ξ2  correspond to the coordinates of the master triangle shown in Figure 2 and

€ 

η1 

and 

€ 

η2 are the coordinates of the corresponding mapped quadrilateral element in 

Figure 2.  
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Figure 2 Mapping of the master triangle in collapsed coordinates (Kubatko et al., 2006). 

 

This mapping can be formulated as (see e.g. Kubatko et al., 2006), 

  

€ 

η1 = 2
1+ ξ1( )
1− ξ2( )

−1,  η2 = ξ2  3.14 

Using Equation 3.14, the approximate solution can be rewritten as, 

  

€ 

uh = u
~

pq φpq
q
∑

p
∑ . 3.15 

In Equation 3.15, the modal degrees of freedom are represented by 

€ 

u
~

pq , and, the trial 

(test) functions 

€ 

φpq  are given by Equation 3.13. 

Runge-Kutta Time Discretisation 

Application of the discontinuous Galerkin method to space discretization reduces the 

system of hyperbolic partial differential equations to one of ordinary differential 

equations, which can be given as, 

  

€ 

∂uh
∂t

= Lh uh( ). 3.16 

In order to discretize these ordinary differential equations in time, the total variation 

diminishing Runge-Kutta scheme (Shu and Osher, 1988) is utilized. For high order 
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spatial approximations where 

€ 

p >1, a high-order TVD Runge-Kutta scheme can be 

given as Equation 3.17 for time increment n to n+1, 

€ 

uh
1 = uh

n + ΔtLh uh
n( )

uh
2 =

3
4
uh
n +

1
4
uh
1 + ΔtLh uh

1( )( )
uh
n+1 =

1
3
uh
n +
2
3
uh
2 + ΔtLh uh

2( )( )

 3.17 

Because of the explicit nature of the scheme, a limitation on the time step is 

necessary, which is defined by the Courant-Friedrichs-Lewy (CFL) condition 

(Kubatko et al., 2006), 

  

€ 

Δt ≤ minΩe
he

λmax e
2p +1( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  3.18 

where he is diameter of the element e and   

€ 

λmax is the estimated maximum eigenvalue, 

p is the polynomial degrees, and Δt is the time step. 

4. Representing Tidal Devices in Numerical Models 

The inclusion of tidal turbines into a depth-averaged flow is always going to require 

simplification of the real physics, and cannot correctly model the flow local to the 

turbines. This is because the depth-averaged models cannot account for complicated 

vertical velocity profiles and has a length scale which is greater than the water depth. 

The flow through a tidal turbine will have a complicated vertical profile and 

variations with length scales much less than the water depth. Our objective is 

therefore to ensure that the correct momentum and energy are extracted from the 

overall flow, but not to attempt to model the details of the wake as this is beyond the 

scope of our model, and attempting to do so will only produce effects that are 

unphysical. 

 

There are two methods that have been considered for extracting energy from the flow. 

Either the turbines can be represented as a discontinuity in the flow (e.g. Draper et al., 

2010) or the drag can be smeared over an area by enhancing the bed friction of a 



 

Not to be disclosed other than in line with the technology contact 14  

given node (e.g. Sutherland et al., 2007). One of the objectives of this project is to 

compare the two methodologies. 

 

Representing turbines as a discontinuity in the flow requires that the difference in 

water level across a tidal turbine to be known as a function of relevant parameters 

characterising the turbines and flow. In this approach it is assumed that the length of 

which the wake mixes (and thus a downstream water depth is fixed) is small in 

comparison to an element. The parameter used in the enhanced bed friction method is 

the turbines thrust coefficient. The parameters used to define these models are 

mutually dependent, and if the head loss is known then an effective thrust coefficient 

may be calculated and vice versa. 

 

It is as yet unclear which is the “better” approach for representing turbines. Using a 

discontinuity has the advantage that the size of the surrounding elements should not 

affect the solution, and also generally means that a coarser resolution may be used 

(with consequent numerical advantages). However, for pragmatic reasons enhancing 

bed friction may be preferable as it requires less (or even no) changes to the source 

code and is expected to give results very close to the alternative. Subsequent 

deliverables will compare the results of the different methodologies. However, it is 

unlikely to determine which gives a more accurate representation of turbines in a 

depth-averaged flow, as there is no data available to for comparison. 

 

Including enhanced bed friction in the model is straightforward, and has already been 

shown to produce the correct power output in WG3 WP6 D3. In the appendix to this 

deliverable preliminary results are presented by applying the enhanced bed friction 

methodology to the Pentland Firth region. 

 

The bulk of this deliverable considers the implementation and verification of the line 

discontinuity method into DG-ADCIRC. In this deliverable, where applicable we use 

actuator disc theory (described in detail in the next section) to model the presence of 
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turbines in the flow. It is straightforward to extend this to other parameterisations of 

the flow through a tidal turbine. 

Linear Momentum Actuator Disc Theory (LMADT) 

LMADT is an extension to actuator disc theory (ADT), which was first proposed by 

Froude (1889) to represent the local steady flow field generated by a ship propeller. 

The theory was then applied by Lanchester (1915) and Betz (1920) independently to 

assess the performance of wind turbines (Van Kuik, 2007). In their studies, 

Lanchester and Betz show that the power available to the turbine cannot exceed 16/27 

of the total upstream kinetic energy flux passing through the actuator disc. This upper 

limit is called the Lanchester-Betz limit, and it has been used to design wind turbines 

over many years. The successful utilization of wind as a renewable energy source has 

encouraged engineers to start applying LMADT to the analogous design of tidal 

turbines. However, standard LMADT assumes unbounded flow conditions, and hence 

is not applicable to tidal turbine design in a straightforward way. Bryden et al. (2007) 

emphasise that the standard Betz model is derived assuming that the flow is 

incompressible and unconstrained, meaning that the boundaries are sufficiently far 

away from the turbines. On the other hand, in open channel flow, the flow is 

constrained by the seabed and the free surface, which influences the behaviour of the 

downstream flow. Furthermore, the operating fluid (water) must be treated as heavy, 

as there are important gravitational effects, which do not feature in the original 

analysis. The derivation of LMADT applied on an open channel has been given by 

Houlsby et al. (2008) and Draper (2011) and hence will not be repeated herein. In 

WG3 WP6 D5, it is aimed to introduce the important results obtained from LMADT 

derivation for open channel flows that are applied in the numerical model DG-

ADCIRC.  

 

The flow field is indicated as in Figure 3 for an open channel flow with a free surface 

elevation. The flow field is divided into several stations for the analysis. Assuming 

that the pressure is hydrostatic and the flow is uniform at stations 1,4 and 5, and the 

bypass flow is uniform, it is possible to write the bypass flow 

€ 

ub4 = β4u  at Station 4 

(Houlsby et al., 2008). The turbine flow velocities at stations 2 and 4 are given as 

€ 

ut2 = α2u  and 

€ 

ut4 = α4u  respectively. In Figure 3, T represents the thrust applied to 
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the flow by the turbine with an area of A, and a blockage ratio of 

€ 

B = A hb. In the 

figure, X indicates a constraining force between the turbine streamtube and the bypass 

flow (Houlsby et al., 2008). 

 

 

Figure 3 An actuator disc placed in an open channel flow with a free water surface (figure taken from 

Houlsby et al., 2008) 

  

Following the derivation conducted by Houlsby et al. (2008), the constant pressure-

volume boundary derivation of the LMADT gives, 

€ 

α2 =

2 β4 +α4( ) −
β4 −1( )3

Bβ4 β4 −α4( )

4 +
β4
2 −1( )
α4β4

 4.1 

where B is the blockage ratio, 

€ 

α4  is the wake velocity coefficient, 

€ 

β4  is the bypass 

flow velocity coefficient and, 

€ 

α2 is the turbine flow velocity coefficient. Equation 4.1 

provides a relation between the upstream and downstream flow velocities which 

accounts for the effect of the bypass flow and can be solved once B and 

€ 

β4  are 

prescribed, while defining either 

€ 

α2 or 

€ 

α4 . Solution of Equation 4.1 is of importance 

for calculating the thrust applied and power extracted by the turbine. Considering that 

Mixing

41 2 5

u

h

A

A

u

u

u

h

h = h

u = u

3

A

T

X

h b u



 

Not to be disclosed other than in line with the technology contact 17  

the bypass flow velocity coefficient will change with respect to the variable upstream 

Froude number, 

€ 

β4  can be calculated from, 

  

€ 

Fr2

2
β4
4 + 2α4Fr

2β4
3 − 2 − 2B + Fr2( )β42 − 4α4 + 2α4Fr

2 − 4( )β4 +

                                                                          Fr
2

2
+ 4α4 − 2Bα4

2 − 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0.

 4.2 

Equation 4.2 is quartic in 

€ 

β4 , and can be solved for defined blockage ratio B, 

upstream Froude number Fr and, wake velocity coefficient 

€ 

α4 .  The thrust applied by 

the turbine and the power that is available to the turbine can be given as (Houlsby et 

al., 2008), 

  

€ 

T =
1
2
ρu2BbH β4

2 −α4
2( ) =

1
2
ρu2BbHCT ,

P =
1
2
ρu3BbHα2 β4

2 −α4
2( ) =

1
2
ρu3BbHCP ,

 4.3 

where ρ is the water density, B is the blockage ratio, b is the width of the channel, H 

is the total water depth in the channel, β4 is the by-pass flow coefficient and α4 is the 

turbine wake induction factor. In Equation 4.3, thrust coefficient is 

€ 

CT = β4
2 −α4

2  and 

€ 

CP = α2CT = α2 β4
2 −α4

2( ) . It is important to highlight one important result from the 

analysis made by Houlsby et al. (2008) and Draper (2011), which is that the actuator 

disc is removing potential energy from the flow rather than the kinetic energy, which 

can be seen as a relative head difference between the upstream and downstream of the 

turbine.  Considering that the flow will mix when it passes through the turbine, 

momentum conservation can be applied in the horizontal direction between upstream 

and downstream of the turbine to show the relative depth change in the flow field, 

  

€ 

1
2
ΔH
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

−
3
2
ΔH
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 1− Fr2 +
CTBFr

2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ΔH
H

−
CTBFr

2

2
= 0, 4.4 

where H is the total water depth, Fr is the upstream Froude number, CT is the thrust 

coefficient and, B is the blockage ratio. Equation 4.4 is a cubic equation which defines 

the relative head drop when the characteristics of the turbine are defined. To conserve 

mass, the head drop downstream of the turbine then leads to an increase in the 
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velocity. In the next subsection, the introduction of the tidal devices defined by 

LMADT (Houlsby et al., 2008) into a two-dimensional depth-averaged model will be 

explained. 

Line Sink of Momentum in 2D Hydrodynamic Model DG-ADCIRC 

The key advantages of using LMADT are its use of theoretical characteristics to relate 

tidal devices to the thrust applied to the flow by them, and the distinction between 

power extracted by the devices to the power available to a tidal fence (Draper, 2011). 

Following Draper (2011), a fence of tidal devices can be modelled as a line sink of 

momentum in a two-dimensional depth-averaged shallow water model. In order to 

achieve this goal, several assumptions need to be made, which can be summarised as 

follows, 

• tidal devices are placed periodically (centre-to-centre) within the fence, 

• the thrust applied locally by the turbines will suffice to dominate the bed 

friction and inertia forces, 

• the blockage ratio, channel depth and width are changing slowly with time 

and, 

• the length of the mixing zone is smaller than the size of an element. 

 

Considering the space discretisation of the flow domain using the discontinuous 

Galerkin method, in addition to the assumptions presented above, it is possible to 

represent the turbines as an edge of an element in the computational domain. The 

momentum sink is then computed by modifying the numerical flux that is used to 

couple the elements. Figure 4 depicts two elements that share a common edge, 

representing a turbine where a line discontinuity occurs. When approaching the edge 

from the interior of the element A, the primitive variables on a Gauss point along the 

edge are given as,   

€ 

H in ,u in ,v in and when approaching from the exterior, the 

corresponding variables are   

€ 

H ex ,u ex ,v ex [which represent the total water depth (

€ 

H = hb +ζ), normal velocity component in the horizontal direction, and the tangential 

velocity component respectively]. Bearing in mind that the effect of turbines is 

represented by means of a line sink of momentum in the flow field, the fluxes out of 



 

Not to be disclosed other than in line with the technology contact 19  

the element A,   

€ 

F H*
in ,u *

in ,v *
in( ) and into the element,   

€ 

F H*
ex ,u *

ex ,v *
ex( ) need to be altered 

to represent the momentum loss. 

 

Figure 4 Neighbouring elements with a line discontinuity, shown as the blue line [Figure is based on 

representation used by Draper (2011)]. 

 

 

Figure 5 Wave structure on the common edge of the neighbouring elements. The solid black lines are 

the rarefaction waves coming in and going out of the element; the dashed blue line represents the 

contact discontinuity (Toro, 2001). 
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Assuming that the flow remains sub-critical, (which it will do for all the relevant tidal 

flows), the wave structure on the common edge then can be shown as in Figure 5. The 

solid lines in Figure 5 represent the shock and rarefaction waves whereas the dashed 

line is the contact discontinuity occurring due to the existence of the tangential 

velocity component (Toro, 2001). The interface values   

€ 

H*
in ,u *

in ,H*
ex ,u *

ex  then represent 

the solution of a one-dimensional local Riemann problem, which would satisfy the 

conditions, 

  

€ 

H*
inu *

in = H*
exu *

ex  4.5 

  

€ 

u in + 2c in = u *
in + 2c*

in

 
4.6 

  

€ 

u ex − 2cex = u *
ex − 2c*

ex

 
4.7 

Equation 4.5 ensures mass conservation at the edge of the element.  Equation 4.6 and 

Equation 4.7 conserve the Riemann invariants along the characteristic lines normal to 

the boundary. In order to account for the momentum sink across the turbine edges, 

one more condition must be assigned. LMADT applied to uniform flow predicts that 

the turbines will remove potential energy from the flow. Adopting Equation 4.4 to the 

above set of equations, 

  

€ 

1
2
ΔH
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

−
3
2
ΔH
H

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 1− Fr2 +
CTBFr

2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ΔH
H

−
CTBFr

2

2
= 0, 4.8 

it is then possible to define uniquely the interface values. Equation 4.8 provides a 

relation for the head drop across the turbine and the upstream head, where

  

€ 

ΔH* = H*
in −H*

ex  is the head difference at the interface, H* is the total water depth, 

CT is the thrust coefficient and Fr is the upstream Froude number.  The thrust 

coefficient is obtained from, 

€ 

CT = β4
2 −α4

2  4.9 

where β4 is the by-pass flow coefficient and α4 is the turbine wake induction factor. In 

the present work, the by-pass flow coefficient β4, is computed by solving the quartic 

equation (Equation 4.2) using the Newton-Raphson method for a given blockage ratio 
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(B) and wake induction factor (α4). The computed thrust coefficient is then 

substituted into Equation 4.8. Considering that equations 4.5, 4.6 and, 4.7 depend on 

the primitive variables, the relative depth change in Equation 4.8 is rewritten as, 

  

€ 

ΔH*

H* =
H*

upstream −H*
downstream

H*
upstream =1− H*

downstream

H*
upstream . 4.10 

Substituting Equation 4.10 into Equation 4.8, we get the depressed cubic expression, 

  

€ 

x 3 + CTBFr
2 − 2Fr2 −1( )x + 2Fr2 = 0, 4.11 

where x is the ratio between downstream (Hdownstream) and upstream (Hupstream) total 

water depths. Equation 4.11 is solved for x to obtain the ratio of downstream depth to 

the upstream.  Using the conservation of mass given in Equation 4.5, we can derive 

the relations between primitive variables follows, 

  

€ 

u *
downstream =

u *
upstream

x
,

c*
downstream = xc*

upstream .
 4.12 

Lastly, the relations in Equation 4.12 are substituted into Equations 4.6 and 4.7 to 

calculate the altered upstream normal velocity and wave speed. The algorithm used in 

DG-ADCIRC first considers the direction of the propagation of information, and then 

the above equations are solved for the primitive variables. 

Verification Test Cases 

The verification test cases include two general configurations of an idealised fence of 

tidal devices inserted in an open channel. The first of these configurations considers a 

narrow channel where a fence is deployed completely across the width of the channel. 

In this scenario, it is expected that the flow will separate around the area of a turbine 

and then mix with the flow passing through it, creating a mixing zone downstream on 

the fence (Draper, 2011). In the second configuration, similar ideal fences are 

deployed in an unbounded flow. The partially blocked flow case is then extended to 

different problems, which consider different configurations within the computational 

domain, in order to test the accuracy and stability of the modified DG-ADCRIC code.  
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a. Turbine fence across the width of the channel 

The test case used for the verification of the algorithm is based on an idealised 

channel, which is forced by an inflow of constant discharge at the upstream boundary 

and has a specified water depth at the downstream boundary. The channel width and 

length are set to 400 m and 1000 m respectively. The depth of the channel is 1 m. In 

the simulations, there is no bed friction. The turbine fence is located in the middle of 

the channel, and extends across the entire width of the channel. In order to test the 

algorithm, various flow rates are selected in order to alter the upstream Froude 

number. The comparisons are then undertaken against different upstream blockage 

ratios and wake induction factors to differing upstream Froude numbers, and are 

undertaken against the analytical solution from LMADT, and the results for different 

upstream flow conditions. These comparisons are plotted in Figure 7. 

 

  

Figure 6 The problem geometry (left- image taken from Draper, 2011). The turbines are located in the 

middle of the channel across the width of the channel. The channel is forced with a specified flux on 

the upstream, and on the downstream the elevation is defined. Relative head drop seen in the flow field 

(right).  

 

The DG-ADCIRC model results are in a very good agreement with the analytical 

solution. Figure 6 shows the problem geometry (left) and the relative head difference 

observed on the flow domain (right), which is plotted on top of the computational 

mesh. Figure 7 presents the comparisons of different blockage ratios for various 

upstream conditions.  
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Figure 7 Comparisons against the analytical (LMADT) solution and numerical (DG-ADCIRC) 

solution for different upstream conditions. The results are plotted against different blockage ratios; a. 

Blockage = 0.2, b. Blockage = 0.3, c. Blockage = 0.4. 
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b. An idealised channel with partial blockage 

In this example, different configurations of tidal fences that do not extend entirely 

across the channel are given. Figure 8 shows the unstructured triangular mesh, which 

is 4000 m in width and 10000 m in length. The coordinates are in latitude and 

longitude. The tidal fence is placed 2500 m away from the upstream forcing boundary 

(shown as a purple line in Figure 8). The water depth is set to 1.0 m, and the bed 

friction coefficient is 

€ 

Cd = 5 ×10−4  throughout the domain. In this example, bed 

friction has been added to the problem in order to achieve a steady solution and to 

avoid wake instabilities (following Draper, 2011). The upstream boundary is forced 

using a constant flow rate to achieve an upstream Froude number of approximately 

0.1. A ramping duration of 0.5 days is implemented in order to prevent a shock wave 

in the solution. The downstream boundary is an elevation specified boundary, which 

is set to   

€ 

H =1.0 m. Slip boundary conditions are applied at the sidewall boundaries. 

The turbine fence is characterized by a wake induction factor of 

€ 

α4 =1 3 and a 

blockage ratio of   

€ 

B = 0.6. The effects of the momentum sink on free surface elevation 

and depth-averaged velocity field are shown in Figure 9 and Figure 10.  

 

Figure 8 The unstructured triangular mesh used in the unbounded turbine configuration test case; the 

purple line shows the upstream boundary which is flux specified; blue line shows the downstream 

boundary which is held at a fix elevation of 1.0 m; red line demonstrates the location of turbine fence 

in the domain; and the brown lines show the sidewall boundaries.  
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A comparison of the computed and intended depth change along the fence is given in 

Table 2.  DG-ADCIRC results are in good agreement with the intended relative depth 

change computed using LMADT. In the next subsection, the modified DG-ADCIRC 

code is tested against more complex problems.  

 

Figure 9 The effect of momentum sink on the free surface elevation profile. The brown line indicates 

the tidal fence configuration. The water surface elevations are in meters. 

 

Position along the fence  LMADT - 

€ 

ΔH H  DG-ADCIRC -

€ 

ΔH H  

0 0 0 

0.1 0.0075 0.0074 

0.2 0.0076 0.0076 

0.3 0.0079 0.0079 

0.4 0.0079 0.0079 

0.5 0.0081 0.0082 

0.6 0.0079 0.0079 

0.7 0.0079 0.0079 

0.8 0.0076 0.0076 

0.9 0.0075 0.0074 

1 0 0 

Table 2 Comparison of computed and intended relevant depth change along the tidal fence 
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Figure 10 The effect of a momentum sink on the local velocity profile. The vectors indicate the 

magnitude and direction of the flow and are superimposed onto a regular grid. The depth-averaged 

velocity contours are in m/s. 

 

c. Partially blocked channels with complex flow conditions 

In this subsection, the modified DG-ADCIRC code has been tested for more complex 

problem settings. The first test considers an idealised channel, which is rotated by 30 

degrees in the counter-clockwise direction. The purpose of this problem set up is to 

test the code’s ability to cope with directionality in the flow domain. The total water 

depth is set to 1.0 m and the unbounded turbine fence is located in the first quarter of 

the channel, normal to the flow direction. The blockage ratio is set to 0.6 and the 

wake induction factor is 1/3. The boundary conditions are the same as the previous 

unbounded tidal fence test case. The coordinate system used is geographic (latitude 

and longitude). The resulting velocity field shown in Figure 11 is in very good 

agreement qualitatively with that in Figure 10 after rotation.  
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Figure 11 Rotated domain test case with unbounded tidal fence placed normal to the flow direction 

 

WG3 WP6 aims to assess the availability of tidal energy resource around the selected 

sites using the modified DG-ADCIRC code that incorporates the LMADT algorithm. 

The numerical models created in the Milestone 2 (M2), are formed using the real 

bathymetric data, which indicates that the seabed changes arbitrarily within the 

computational domain. This test case therefore examines the capability of the 

modified DG-ADCIRC code to cope with non-uniform bathymetric conditions in the 

presence of tidal fences. Thus, the next test case considers the rotated idealised 

channel introduced previously, with variable bed topography. The change in the 

bathymetry is calculated with respect to the longitude of the nodes. The bathymetric 

depth is calculated as follows, 

  

€ 

Hvar iable =1+
longitudenode

100
 4.13 

Figure 12 shows the mesh used and the predicted velocity field. The results show 

higher velocities within the domain due to the decrease in the total water depth within 

the computational domain. 
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Figure 12 The computational mesh used in the problem showing the bathymetric depth within the 

domain (top), and the computed velocity field for a rotated rectangular channel with variable 

bathymetry (bottom). The contours are in metres. 

 

The next test case examines the behaviour of the turbine model to non-normal flows. 

Figure 13 indicates the velocity field computed for an idealised horizontal channel, 

where the turbines are positioned at an angle of 60 degrees to the incoming flow.  
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Figure 13 Idealised horizontal channel with unbounded turbines installed with an angle to the flow. 

 

Lastly, a test case is created for an idealised horizontal channel with constant bed 

topography (1 m), where a rectangular island is located near to the upstream 

boundary. The unbounded tidal fence is inserted on the downstream of the island in 

order to test the capability of the modified code to cope with shed eddies. The 

computed velocities are shown in Figure 14. With this last test case, the modified DG-

ADCIRC code, which uses the LMADT routine to represent the tidal turbines, proves 

to be stable when forced with realistic conditions. 

 

Figure 14 Idealised horizontal channel containing rectangular island. The turbine fence is indicated 

with the brown line on the downstream of the island. 



 

Not to be disclosed other than in line with the technology contact 30  

5. Application of Line Sink of Momentum in 2D Depth-

Averaged Shallow Water Models 

This section presents the preliminary results for single array of turbines installed at 

the Anglesey Skerries. For the simulations, the modified DG-ADCIRC code is used 

which uses the line sink of momentum in order to represent FDC tidal arrays.  The 

numerical model used in this section is an altered version of model presented in WG3 

WP6 D4B, which includes the inter-tidal zones around the Bristol Channel. In the 

present model, the wetting and drying treatment is included in the computation. Table 

3 outlines the model set up. In the model, first order piecewise linear elements are 

used. The numerical flux selected for the computations is the HLLC flux, introduced 

in Section 3. Second order, second stage Runge-Kutta time discretisation has been 

used in accordance with the linear elements used in the model. 

Parameter Value Notes 

Time-step 0.5 s 

To ensure stability, the time-step must 
satisfy the CFL condition, and diffusivity 
criterion, and so is dependent on the finest 
mesh size and the polynomial order used. 

Ramping duration 1 day To avoid shock-waves developing in the 
computation 

Simulation period 3 days  

Eddy viscosity 
coefficient 3 m2/s Average value adopted for basin-scale 

hydrodynamic models 

Non-linear bed 
friction coefficient 0.0025 Average value for depth-averaged models 

Coriolis Force Varies Derived from latitude and longitude 

Harmonics used M2 
Preliminary simulations forced with the most 
significant tidal harmonic constituent 

Wetting and drying On 
In order to investigate the significance of 
using wetting and drying on regions such as 
the Severn Estuary on the numerical model 

Table 3 Model set-up parameters 
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Tidal harmonic analysis has been undertaken to compare the model results with the 

observed M2 amplitudes and phases in several stations (see Table 4). Very good 

agreement is obtained between predictions of the DG-ADCIRC model with the 

Admiralty Charts for an M2 tidal constituent. Inclusion of the wetting and drying 

treatment has improved the model results in the Bristol Channel region, compared to 

the results presented in WG3 WP6 D4B.  

Observed (Admiralty Charts) Predicted (DG-ADCIRC)  

Location 
Amp., 

€ 

Hn m( )  Phase, 

€ 

ϕn °( )  Amp., 

€ 

Hn m( )  Phase, 

€ 

ϕn °( )  

Heysham 3.19 325 3.21 328 

Ramsey 2.42 328 2.45 324 

Port of St. Mary 2.04 324 2.07 320 

Port Dinorwic 1.70 301 1.72 298 

Caernarfon 1.61 293 1.64 285 

Moelfre 2.47 308 2.48 302 

Amlwch 2.30 305 2.37 300 

Cemaes Bay 2.13 307 2.22 301 

Holyhead 1.81 292 1.88 287 

St. Thomas 4.25 194 4.30 186 

Minehead 3.59 183 3.56 173 

Ilfracombe 3.04 162 3.01 162 

Lundy 2.67 160 2.62 163 

Port Isaac 2.47 144 2.42 151 

Newquay 2.24 142 2.26 143 

Milford Haven 2.22 173 2.19 176 

Port Talbot 3.13 173 3.25 175 

Barry 3.82 185 3.95 183 

Table 4 Comparison of M2 tidal amplitudes of phases around Scotland, England, the Isle of Man and 

Wales 
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A more detailed analysis for the influence of wetting and drying treatment in the 

present model will be given in WG3 WP6 D6. Although, an improvement in results is 

seen for the Bristol Channel observation stations, the model still under-predicts (~5%) 

the M2 tidal amplitudes and predicts slightly different phases (by ~+3 degrees) for the 

Anglesey stations. 

 

The present report aims to test the line sink of momentum method in order to 

represent the effects of FDC tidal arrays in two-dimensional depth-averaged models 

and to give an initial understanding about how the tidal turbines will affect the flow 

characteristics around the Anglesey Skerries.  

 

The main Pentland Firth results will be discussed in WG3 WP6 D6 as the site is 

chosen for the cross-comparison with the EDF model, although some preliminary 

results using the enhanced bed friction model are reported in the present report as an 

Appendix (see Section 7). 

Change in M2 Tidal Constituent in the Anglesey Skerries 

This section discusses the preliminary run results using the altered DG-ADCIRC code 

that accounts for a line sink of momentum for specified edges in the computational 

domain, applied in the Anglesey Skerries. Including line sink of momentum into the 

code requires several changes in the source code. WG3 WP6 D4B explains the 

specifications of the input files that DG-ADCIRC code requires. In order to assign 

turbine edges, which are naturally internal, the structure of the ‘fort.14’ file that 

defines the nodes, their coordinates, the triangulation of the nodes and boundary 

conditions has been modified. The modified DG-ADCIRC code, which incorporates 

LMADT algorithm, requires the user to define the nodes that are used to create the 

edges, which are representing the turbines in the computational domain, in the 

‘fort.14’ file. After creating the turbine edges, the user needs to define the 

specification of the turbine diameter and the wake induction factor, which can be 

input in the ‘fort.dg’ file. In the algorithm, the turbine diameters are used rather than a 

fixed blockage ratio because of variations in the bathymetry. The blockage is then 

calculated from an equivalent turbine size within the computation locally. For axial 
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flow turbines with a specified turbine diameter, it is possible to calculate the spatial 

blockage ratio indicated as in Equation 5.1, 

  

€ 

Blocal =
πDaxial

2

4bHtotal

. 5.1 

where Daxial indicates the turbine diameter, b is the lateral spacing between axial flow 

turbines in the array and Htotal is the total water depth. The computational mesh 

involves structured elements embedded within the unstructured mesh, in order to 

define the tidal arrays continuously within the domain. Figure 15 shows the structured 

elements embedded in the unstructured mesh in the vicinity of the Anglesey Skerries. 

The turbine array is indicated as a brown line located on the NE of the Skerries. The 

total length of the array is 7750 meters. The average water depth in the area, where 

the turbine array is located, is 50 m. The turbines are configured so that on average 15 

m of the water-column is swept by the turbines. This gives a blockage ratio during the 

simulations between 0.23 – 0.38 depending on the bathymetry. In the simulations, 

same model set up is used as explained in Table 3.  

 

Figure 15 The structured elements embedded within the computational domain in the vicinity of the 

Anglesey Skerries 

 

Two scenarios are considered for applying the DG-ADCIRC code within the 

Anglesey Skerries region. In the first case, the tidal devices are defined with a wake 

induction factor (α4) of 0.9 and diameter of 22 m for an axial flow device. For this 
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test case, choosing α4 as 0.9 gives a thrust coefficient on average of 0.28. Thus a mild 

change in the tidal regime is expected. For the next test case, the tidal turbine 

diameters are also set to be 22 m, but with a wake induction factor (α4) of 0.4. Table 5 

gives a similar comparison to Table 4, which lists the simulated M2 amplitudes and 

phases within the simulations. Table 5 shows that in several observation stations close 

to the Anglesey Skerries, there are insignificant changes in the M2 tidal amplitudes 

and phases.  

Base Case (No Turbine)   

€ 

Daxial = 22m;α4 = 0.9    

€ 

Daxial = 22m;α4 = 0.4   
Location 

Amp., 

€ 

Hn m( )  
Phase, 

€ 

ϕn °( )  
Amp., 

€ 

Hn m( )  
Phase, 

€ 

ϕn °( )  
Amp., 

€ 

Hn m( )  
Phase, 

€ 

ϕn °( )  

Port 
Dinorwic 1.72 298 1.72 298 1.73 299 

Caernarfon 1.64 285 1.64 2.85 1.64 286 

Moelfre 2.48 302 2.48 302 2.48 303 

Amlwch 2.37 300 2.37 300 2.37 301 

Cemaes 
Bay 2.22 301 2.23 301 2.25 302 

Holyhead 1.88 287 1.89 288 1.89 288 

Table 5 M2 tidal amplitudes and phases predicted by the simulations for different cases 

 

The impact of the turbine arrays can be seen in Figure 16 and Figure 17, which show 

the M2 co-tidal amplitudes and phases respectively. Both figures include the base case 

where no turbines are included in the computation (the black line represents the 

location of turbines for cross-comparison), and the two turbine array cases using 

different wake induction factors. Figure 16 shows that the M2 co-amplitude lines in 

the vicinity of the turbine array are changed due to the change in the velocity. The 

turbine array stands as an obstacle to the flow, which in turn slows down the flow 

passing through the turbine array. The increment in the M2 co-tidal amplitude is 

shown in Figure 18. Figure 17 shows that in the vicinity of the turbines the high tide 

is observed in a shorter period than the natural case.   
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Figure 16 M2 tidal amplitudes; (1) natural case, (2) al4 = 0.9, (3) al4 = 0.4. The axial tidal turbine 

diameter is 22.0 m and the blockage ratio is calculated with respect to the local water depths. The tidal 

turbine fence is indicated as a black line on the offshore of the Anglesey Skerries. The contour lines are 

in metres. 
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Figure 17 M2 tidal phases; (1) natural case, (2) al4 = 0.9, (3) al4 = 0.4. The axial tidal turbine diameter 

is 22.0 m and the blockage ratio is calculated with respect to the local water depths. The tidal turbine 

fence is indicated as a black line on the offshore of the Anglesey Skerries. The contours are in degrees. 
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Figure 18 M2 co-tidal amplitude change in the vicinity of the turbine array using turbines specified 

with diameter of 22.0 m and wake induction factor of 0.4. The contour plot is in metres. 

 

Figure 19 shows the change in velocity magnitude seen in the area where turbine 

array is located. It is clear from the figure that, around the edges of the turbine array, 

the flow is accelerated. Along the fence, the flow is slowed down as the fence acts as 

an obstacle to the flow (shown as the green region in Figure 19). The largest reduction 

in velocity occurs in the region where the fastest flow occurs in the natural case 

(indicated as the dark blue contour in Figure 19). Figure 20 plots the change in 

velocity phases around the region where the tidal turbine fence is located. In the 

figure, it is seen that the maximum velocities are observed later than the natural case. 

The maximum velocity phase difference is approximately 10°, which indicates 

approximately a 30-min delay in the vicinity of the tidal turbine fence.  
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Figure 19 Change in velocity magnitude of M2 tidal constituent in the vicinity of the tidal array. The 

contours are given in m/s. 

 

 

Figure 20 M2 velocity phase difference in the vicinity of the turbine array. The contours indicate the 

phase change in degrees. 
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Power Generation 

This section shows the preliminary results for average power extraction in the 

Anglesey Skerries. Using Equation 4.3 the power extracted from the flow can be 

calculated as, 

  

€ 

P =
1
2
ρu3Bbhα2 β4

2 −α4
2( ) =

1
2
ρu3BbhCP . 5.2 

In Equation 5.2, ρ is the fluid density, u is velocity of the flow, B is the blockage ratio 

dependent on the spatial water depths, b is the width of the analysis considered along 

the fence, h is the total water depth, β4 is the bypass flow velocity coefficient, α4 is 

the wake velocity coefficient, CP is the power coefficient that equals to 

€ 

CP = α2CT = α2 β4
2 −α4

2( )  and α2 is the turbine flow velocity coefficient, which is 

given in Equation 4.1. Figure 21 shows the average power extracted by the turbine 

fence located in the Anglesey Skerries. The turbine diameters are taken as 22.0 m and 

the wake induction factor is 0.4.  

 

Figure 21 The power extracted in the Anglesey Skerries during the simulation. The axial tidal turbine 

diameter is 22.0 m and the wake induction factor is 0.4. 
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In the simulation, the tidal waves are ramped in gradually at the open boundaries 

during the spin-up period, thus in Figure 21 the average power extracted from the 

flow in the first few cycles is less than the rest of the simulation. The preliminary run 

gives ~350 MW (peak) extracted from the flow within a tidal cycle in the Anglesey 

Skerries by devices of the above specification. The average power extraction over the 

final 24 hours of the analysis is 140 MW. No attempt has yet been made to optimise 

the turbine properties or configuration. Note, very importantly, that the power 

extracted from the flow must not be confused with the actual power available for 

generation (see Houlsby et al., 2008). 

6. Conclusions 

The present report gives a summary of the two-dimensional depth-averaged 

governing equations (SWEs) and the discontinuous Galerkin method, which is used to 

solve them. In WG3 WP6, a line sink of momentum method is used in the numerical 

model in order to incorporate the effects of tidal turbine fences in reality. The tidal 

fences are defined by using Linear Momentum Actuator Disc Theory and the code has 

been verified with different flow regimes. The modified DG-ADCIRC code is then 

used in the Anglesey Skerries region to test the algorithm. The results show that there 

is a change in the M2 tides in the region where the turbine fence is located. The 

preliminary results given here are promising but further parametric studies need to be 

taken in order to predict the disturbance to the natural flow regime. These parametric 

studies are subjected to WG3 WP6 M4.   

7. Appendix  

The alternative approach to the line discontinuity was shown to work for idealised 

cases in WG3 WP6 D3. In this appendix results are presented showing how this has 

been applied to the model of the Pentland Firth developed in WG3 WP6 D4A. Note 

that more detail of these results will be presented in subsequent deliverables. Lines of 

enhanced roughness were considered across the channels of the Pentland Firth as 

shown in Figure 22. 
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Figure 22 Locations of turbine fences within the numerical model. Colours show the rms velocity of 

the M2 tidal components in m/s 

 

First consider using enhanced roughness across the transect A (across the entire 

channel). As the thrust applied by the turbines is increased, the flow through the 

Pentland Firth reduces. Figure 23 shows how the power extracted from the flow, 

averaged over the tidal cycle, varies as a function of the  maximum flow rate through 

the strait, Qnat. The maximum average power which can be extracted is approximately 

4 GW. This would require a reduction in the flow through the Pentland Firth to 55% 

of the natural value. However, it is possible to extract much of the power with a much 

smaller disturbance (e.g. 3 GW with only a 20% reduction in the maximum flow rate). 
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Figure 23 Average power extractable from the M2 tide at transect A as a function of the flow rate. 

 

In Figure 24 and Figure 25 the difference between the M2 tidal dynamics for the case 

of maximum energy extraction are shown. The change in water level across the 

turbines can be clearly seen. 

 

 

Figure 24 Change in M2 water level between natural case and the point of maximum energy extraction 

for turbines at cross-section A. Water level in metres. 
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Figure 25 Change in M2 current velocities between natural case and peak energy extraction for 

turbines at A. Velocities in m/s. 

 

The peak energy predicted by the model is in good agreement with the simplified 

model of Garrett & Cummins (2005) providing additional verification of these results. 

 

In Table 6, the peak power is presented, which may be extracted from the other sub-

channels or from placing turbines across multiple channels. It can be seen that the 

resource of the sub-channels are interdependent. It can also be noted that power 

extracted along BCD combined is almost equivalent to ‘A’, suggesting that extracting 

the maximum resource is virtually independent of the location of the devices, if the 

entire flow through the Pentland Firth is intercepted. 

 

These results are presented here for preliminary discussion, as much further work and 

analysis is required on these cases.  
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Maximum average power extracted (MW) 
for selected transect 

A B C D E 

Total 

average 

power 

(MW) 

3943     3943 

 99    99 

  1547   1547 

   451  451 

    240 240 

 179 1611   1790 

 121  466  587 

 86   220 305 

  1513  166 1622 

  2401 1093  3494 

    213 570 

 248 2555 1136  3939 

Table 6 Maximum extractable power, averaged over the tidal cycle, for the various transects of the 

Pentland Firth 
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