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Abstract:
This report includes an analysis of numerical modelling of tidal turbine arrays involving interactions within an array. 

Implementation of the zero tangential shear condition is included.

Context:
The Performance Assessment of Wave and Tidal Array Systems (PerAWaT) project, launched in October 2009 

with £8m of ETI investment. The project delivered validated, commercial software tools capable of significantly 

reducing the levels of uncertainty associated with predicting the energy yield of major wave and tidal stream energy 

arrays.  It also produced information that will help reduce commercial risk of future large scale wave and tidal array 

developments.
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be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, 

indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and 

lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement 
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Nomenclature 
 

A
r

, B
r

 
Vector lines formed between the centres of a cell iel and its neighbour cell with 
index number 

   C Constant that preserves the consevation of φ globally 
con(iel,i) Connectivity function giving the index number of the cell face i  associated with cell 

index number iel 
CI CI  is a set of nodes that are connected Ih but Ih

th node is not included in the CI set of 
nodes 

( )sΗ  Heaviside function such that ( )sΗ  = 1 if s > 0, otherwise ( )sΗ  = 0 for s ≤  0 

iface(i,ifac) Code Saturne’s connectivity function giving the index number of the ith neighbour 
cell about cell face index number ifac 

Ih Ih
th node in the halo region of  the narrow band region 

κ Set of simplexes in a region of the narrow band such that it surrounds an isosurface 

nbcell(iel,i) Cell connectivity function giving the index number of a neighbour cell associated 
with a central cell with an index number of iel 

ηK Simplex wise correction function associated with the Kth local grid mesh simplex 
volume function  

NI Number of simplexes that contain the node I which the Kth simplex is a part of 
n̂  Unit normal to the free surface 

nfac Total number of cell faces from all field cells(code Saturne parameter) 
Ρ  Set of nodes with a narrow band region with a set of κ simplexes. 

ℜ  Set of halo nodes of the narrow band region in which Ih
th node is a part of ℜ  

Sh Zero Level Set surface 
Simplex Any triangle or tetrahedron formed from the cell centres of existing mesh cells 

which around an isosurface region for the purpose of  geometric based re-distancing 
of that region of the isosurface 

ŝ  Tangential unit vector to the free surface position normal to n̂ and t̂  

t̂  Tangential unit vector to the free surface position 

t Model time in seconds 
u
r

 Interface velocity of the isocontour, wave. 

ux x component of u
r

 
uy y component of u

r
 

uz z component of  u
r

 

nearestu
r

 The nearest velocity to the free surface position 

JX
r

 Position vector of a the Jth node such that J belongs to the CI set of nodes in the 
narrow band region 

hIX
r

 Position vector of a the Ih
th node such that Ih belongs to the ℜ set of nodes in the 

narrow band region 
x
r

 Position vector in the flow field 

y
r

 Position vector on isocontour Sh 

φ Level Set scalar 

φ
*  Signed distance function from a flow field point x

r
 the closest point on the 

iscontour Sh    
ψ Correction function to correct or redistance φ 
∆VK Local grid mesh simplex volume function for simplex K in the narrow band 
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∆V Global volume function for a set κ of simplexes  

ξ I Node wise correction function at node I for a number of simplexes that contain node 
I 

Ω Flow field 

θ The angle between two vectors A
r

 and B
r

 
µs Dynamic viscosity at the free surface 

σ Surface tension at the free at the free surface 
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1  Executive summary 
 
 
This report, together with the accompanying FORTRAN subroutines, forms deliverable D2 of work 
package WG3WP2.  The WG3WP2 objectives achieved so far are:  
 
• Development of the level-set free surface model              - WG3 WP2 D1 
• Implementation of the Zero Tangential shear condition    -  WG3 WP2 D2 
 
The first objective was completed previously in D1 which covered the Level Set model development. 
The second objective is that for D2 and the free-surface or upstream boundary conditions using a Ghost 
Fluid Method implemented within Code_Saturne modules. The validation of the above objectives 
forms the framework of deliverable D3. 
 
To achieve these objectives, the PerAWaT project will make use of the existing parallel, high accuracy 
open source, CFD code Code_Saturne (developed by EDF) and will extend the model to provide a 
mechanism for modelling the performance of a small array of marine current turbines at the meso-
scale. The content of the deliverable is: 
 
• A review of the experienced gained from the previous deliverable in regards to Level Set modelling involving 
connectivity and re-distancing. 
• The description of the theory to achieve a free surface modelling using a Ghost Fluid Method. 
• An in-depth discussion on the current modelling strategy which aims for: emulation of the free surface conditions 
between the air and regions associated with tidal flow, and avoidance of numerical instabilities. 
• Details of the necessary test case  verification of the model, (the results of which will be published in D3). 
 
 
Implementation of the free surface model requires modification to the user routines to enable the 
location of the free surface to be determined accurately and maintained, and to enforce the required 
boundary conditions across the free surface.  The chosen approach requires the fluid flow equations to 
be solved only in the water.  The implementation described in this report involves the use of a new 
Fortran-90 module to maintain the required connectivity information on an unstructured grid, as well as 
modifications to the user routines USCLIM.f90, USINIV.f90, USINI1.f90 and USPROJ.f90.   
 
This work will follow a process of development with the existing flow solver:  
(1) The implementation of a free surface model which satisfies the zero-tangential shear boundary 
condition,  
(2) The implementation of an unsteady upstream boundary condition to introduce large scale, 
synthetic, turbulent eddy structures into the domain,  
(3) The development of a parameterised actuator disk model of a horizontal-axis marine current 
turbine.   
  
The introduction covers the description of the Level Set method, and explains why it was chosen as the 
best approach to free surface modelling, with reference to the most recent improvements in the 
numerical scheme, namely improved mass conservation features.  
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The methodology section gives a detailed description of the Level Set method used, with particular 
reference to the author’s implementation of an advanced mass preserving re-initialisation method and 
its application to structured or unstructured grid systems.  
 
 This deliverable meets the acceptance criteria of D2, which states in WG3 WP2 D3 that 
 
(1) Modules produced are capable of operating within Code Saturne. Source code sufficiently 
commented such that it can be logically followed by a third party. 
(2) Report describes the assumptions and algorithms behind the additional modules and current 
applications and limitations. The report will verify the functionality of the modules 
 



Not to be disclosed other than in line with the terms of the Technology Contract 
 

Page 7 of 27 
 

 
 
 
 

2 Introduction 
 
The application of Code_Saturne to the simulation of small farms of tidal turbines requires three major 
developments of the existing flow solver:  
 
1. The implementation of a free surface model which satisfies the zero-tangential shear boundary 
condition; 
2. The implementation of an unsteady upstream boundary condition to introduce large scale, 
synthetic, turbulent eddy structures into the domain; and, 
3. The development of a parameterised actuator disk model of a horizontal-axis marine current 
turbine.   
 
This report, together with D1 and D3, addresses the point (1), the implementation of a free surface 
model, which satisfies the zero-tangential shear boundary condition.   
 
 The remaining two points will be dealt with in subsequent deliverables. The inclusion of a free surface 
in flow simulations is thought to be important to the accurate modelling of the flow field in, and 
around, an array of turbines, as energy extraction leads to deformation of the free surface and 
subsequent changes in the pressure and velocity distributions around the turbines.   
 
Such a boundary condition is also critical if the influence of surface waves on the turbines is to be 
investigated. If the simplest approach of using a “rigid lid” is to be avoided a number of approaches are 
available, including: Surface Fitting [1], Density Function [2], Front-Tracking [3], Smoothed Particle 
Hydrodynamics [4], Volume of Fluid (VOF) [5], Free Surface Capturing [6] and Level Set Method 
[7,8].  Most of these approaches simplify the flow problem and the computational requirements by 
considering only the liquid-component (modelling the gas component by a numerical vacuum). 
 
Modelling methods involving surface-fitting [1] have advantages of speed but lack complexity since 
the free surface is treated as a moving upper boundary. It therefore has limited application to simple 
free surface modelling with little skewness1. Re-gridding and interpolation methods can avoid the 
effects associated with grid skewness at the price of accuracy. Other effects of wave breaking2 cannot 
be modelled with this method due its inability to specify an explicit boundary at the interface of a 
breaking wave [11].  
 
The use of marker functions like a volume or signed distance function with surface-tracking schemes 
such as VoF or Level Set may be employed to define the location of the free surface. As result these 
methods can model wave breaking but each method has its limitations. With VoF, the location of the 
free surface will involve reconstruction from the volume fraction. Unfortunately, VoF needs to employ 
a specific reconstruction algorithm for a particular application, such open channel flow or mould 
filling. There is also the extra problem of a large number of grid cells needed to accurately calculate the 
free surface curvature.  

                                                 
1 The term skewness refers to angle between the vector normal of the cell face between two neighbouring cells and the line 
vector connecting their centres [10]. 
2 Water-air interactions are of significance in wave modelling particularly with overtopping [11]. 
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 Lagrangian Grid Methods [15] which are imbedded in the moving surface are an efficient solution 
to effective free surface definition but are unable to track surfaces that break up or intersect. Other 
approaches such as Smoothed Particle Hydrodynamics (SPH) involving a large number of Lagrangian 
particles suffer poor free surface definition unless employing a large number of particles, which makes 
the method computationally inefficient. 
 
The approach adopted here is to employ a Level Set approach to free surface calculations adopting the 
boundary condition as laid out in Watanabe et al [16]. The reasons for this choice are born out of 
numerical efficiency in free surface calculation of curvature and location without resorting 
parameterising these objects. With the Level Set method, the location of the free surface is defined by 
the zero contour of a signed distance function. Using this approach has the advantage of representing 
the discontinuous properties such as density in terms of a continuous function. The Level Set (LS) 
method main advantages over VoF are better surface definition without the empiricism of a specific 
reconstruction algorithm for a particular application. Mass conservation with LS, which is 
automatically met with VoF, has to be achieved by re-distancing techniques, discussed later. 
 

2.1 The Level Set Method 
 
The Level Set Method is a surface-tracking scheme which uses a marker function φ known as signed 
distanced from the interface Sh whereby φ= 0. The evolution of marker function, also known as a Level 
Set given as 

                           ( ) 0=⋅∇+
∂
∂ ϕϕ

u
t

r
,                                                 (1) 

where ( )zyx uuuu ,,=r
 is the interface velocity in the three dimensional flow field Ω. Both the level set 

function and the velocity field are functions of( ) 0,,, >Ω∈ txtx
rr

.  In this project the Code_Saturne 
solver is employed and the Navier-Stokes equations operating in the kernel of the programme will 
supply the updated interface velocity at each time step. Unfortunately φ is not maintained with 
reference to conservation laws and therefore the zero φ iso-surface will propagate at the incorrect 
speed, which means that a mass conservation error will occur at the moving interface. To correct this 
fault re-distancing methods have been introduced with some as elaborate as level-set- based adaptive 
Characteristics-Based Matching method [17], which involves the use Adaptive Mesh Refinement 
applied in the main flow transport solver and the Level Set Method combined. The usual approach to 
perform re-distancing would involve high-order finite difference schemes, such as high-order 
essentially non-oscillatory (ENO) schemes like Hamiltonian-Jacobi Partial Differential equations [7, 8, 
19]. Unfortunately the method of re-distancing φ is not local enough to each cell centre area within the 
flow field. For this reason the author selected the approach of Ausas et al [18] which lends itself well to 
unstructured grids as is case with Code_Saturne. 
 
If the Level Set φ met the conservation mass requirement it would be equal to the sign distance 
function φ*. Unfortunately, a correction ψ to the Level Set is needed3 

                                                 
3 The explanation as to why re-distancing is needed, which is indicated in Equation (2), is the most generally adopted 
description of the re-distancing process see references [7,8,16,18] 
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                             ψϕϕ += *                                                   (2) 
 
In Figure 1 the signed distanced function φ

*  is defined, which is the closest signed distance to the zero 
isocontour Sh, in which y

r
 belongs to the zero isocontour for a given point in space x

r
 

 

                            ( ) ( )[ ] yxxx
hSy

rrrr
r

−=
∈

minsign* ϕϕ                    (3) 

 

2.2     The Ghost Fluid Method 
 
Single phase Eulerian schemes perform adequately for most situations with gases involving large 
deformations. With multi-phase Eulerian schemes, the region near each interface will experience non-
physical oscillations in the Navier Stokes calculations, due to the density profile being smeared out and 
the radical change in equation of state across this region. With Lagrangian schemes these oscillations 
will not occur, since density profiles are not smeared out and equations of state are still valid over each 
point. The Ghost Fluid method (GFM) proposed by Fedkiw et al [19, 20] both Eulerian and 
Langrangian schemes are combined. By considering the water-air interface region, we can solve for 
water by replacing the air region near the interface with ghost water that acts like the air in every way 
(same pressure and velocity as air) but appears to be water (same entropy as water). As a result, 
boundary conditions are captured appropriately in the region narrow band region as seen in Figure 10. 
The GFM therefore becomes a one phase problem, because the ghost fluids behave consistently with 
the real fluids they are replacing, and also have the same entropy as the real fluid that is not replaced. 
For this reason a GFM approach was applied to the free surface boundary problem discussed in this 
report. The free interface between fluids is tracked with the Level Set approach, which was discussed 
earlier. The jump conditions at the interface for pressure and velocity are imposed by GFM. The re-
distancing discussed in 2.1 would allow GFM to work properly with the Level Set method in Code 
Saturne as long as the air region above ghost fluid region is not allowed to update itself in terms of 
pressure and velocity, i.e. 0/ =∂∂ tu

r  and ∂P/∂t =0, for the air region indicated as region B in Figure 10. In 
Figure 8, the ghost cells are selected a distance ϕ = |l|  above the free surface shown as white triangles. 
The jump conditions for GFM were developed in Kang et al. [20]. The discontinuous derivatives for 
velocity and pressure across a sharp interface between regions A and B are defined discretely in the 
narrow band shown in figure 10 as 
 
                               κσµ ′=∇+∇− nuunP t ˆ)].)((.[ˆ][

vv                    (4)               
                                [ ] 0ˆ.))((.ˆ =∇+∇ nuut t

s

vvµ                                           (5) 

                                [ ] ,0=u
v

                                                                            (6) 
 
where [.] = (.)G – (.)R represents the jump in general quantity across the free surface in the narrow band 
region indicated in Figure 10. Quantity (ψ)G represent the ghost cell quantity ψ from a point in the red 
band region of the narrow band as indicated in figure 10.  In figure 8, the ghost quantity (ψ)G  is 
associated with the white triangles while image quantity (ψ)R is associated with the blue triangles. 
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Pressure defined in equation (4) needs to be accounted for as when solving the Poisson equation. This 
involves [p*] across the free surface as 
 
                                     κσµ ′∆=∇+∇∆− tnuuntp t ˆ)].)((.[ˆ2][ * vv       (7) 

 

 For the purpose of deliverable D2, the above model has been simplified to an inviscid situation 
whereby for the free surface, µs and σ are treated as negligible quantities. As a result equations (4) 
becomes 
 

                              [ ] 0=P ,                                                                                       (8) 
 
 with equations (5) and (7) not used. This indicates that pressure and velocities are continuous across 
the free surface such that for pressure (P)G = (P)R   and   (uv )G = (uv )R             
 

3 Methodology 
 

3.1     Introduction 
 
In this section the methodology behind free surface modelling is presented involving the 
implementation of an unsteady upstream boundary condition. As discussed previously in section 2.1, 
the preference for a re-distancing method involving a geometric mass preserving approach for level set 
function is born out the fact that correction to the LS, expressed in equation (2), is more localized to 
cell centres as compared to the usual Partial Differential Equation-based approach for re-distancing 
[7,8,18]. Section 3.2 gives a detailed account of the method.  
   
Once re-distancing is completed the free surface, which is also the isocontour of the now corrected LS 
at φ = 0, will now be used in the calculation of the surface normal n̂ and curvature κ,’ as given in 
equations (9) and (10). 
 
                              

ϕ
ϕ

∇
∇−=n̂

                                                                                              (9) 

 
                                    n̂.∇=′

ν
κ                                                                                                   (10) 

 
These are important geometric features of the free surface which play an important part in the Ghost 
Fluid Method (see section 2.2). Equations (4), (5) and (7) for the jump conditions developed in Kang et 
al[20]. In section 3.3 the numerical methodology is discussed in more detail. Further to this, we can 
also find the unit tangential vector to the free surface t̂  in 2D flow. Again this is important in Equation 
(5) as we are considering a non-zero shear stress at the free surface. This can be found simply by the 
cross product of the normal to the free surface and the normal to the 2D flow field (Equation (11)) 
 
                            ,ˆˆˆ knt ∧=                                                                                               (11) 
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where k̂ is the unit normal to the 2D flow field. In the case of 3D flow the nearest flow velocity to the 
free surface is taken for t̂ , while the second  unit vector ŝ is the cross product of  t̂  and n̂ , that is  
 

                            
nearest

nearestnearest

un

nunu
t v

vv

.ˆ

ˆ)..ˆ(ˆ −
=                                                            (12) 

 
                                      nts ˆˆˆ ∧=                                                                        (13) 
 
 
 
From the GFM described later in section 3.4 the assumption at the free surface of zero shear stress µs = 
0 and zero surface tension σ = 0 renders tangential quantitiest̂ and ŝ redundant for D2 cases . In later 
deliverables, the shear stress at the free surface will be non-zero which will involve t̂ in the more 
advanced GFM, along with the second  free surface tangential unit vector ŝ in the case of 3D flow. The 
method by which the slope ϕ∇  has been calculated in the author’s modules is based on gradient 

smoothing method,(GSM) [22,23]. GSM is based on divergence theorem and is discussed in more 
detail in section 3.3. 
  
After  the calculation of slope and curvature at free surface, the Ghost Fluid Method can be applied at 
the particular time step ∆t. The GFM is applied to the narrow band region, (shown as red in figure 10). 
In the narrow band region values of pressure and velocity calculated from the image points, as shown 
in blue triangles in figure 8, are simply passed over to the respective ghost points, shown as white 
triangles in figure 8. The ghost points populate the red band region of the narrow band region as shown 
in figure 10, while the image points holding the real values populate the green band region of the 
narrow band. Finally, implementing an unsteady upstream boundary condition is possible through 
module USCLIM.f90. In this module different velocity and pressure profiles can be entered through the 
inlet boundary at different positions along the boundary at each time step ∆t, since USCLIM.f90 is 
referred to at the beginning of every time step. (See section 3.5 for details). 
 
To recap on the entire process of implementing a free-surface boundary condition using a Level Set 
method with a GFM solver, the following is implemented for each time step ∆t 
• A single scalar selected from the Code Saturne GUI is used represent the sign distance function φ

*, 
which is set up across the inlet boundary with USCLIM.f90 and throughout the flow field initially with 
USINV.f90 and latterly updated at end of each time set with USPROF.f90. 
• The initial surface reconstructions based φ

*on require modification to meet mass conservation 
through the process of re-distancing. Again this is achieved initially with USINV.f90 and subsequently 
with USPROJ.f90. 
• After re-distancing, geometric attributes of the wave surface are calculated, i.e. n̂ etc. 
• Finally, the values of ghost values of velocity and presure are updated ready for the next time step 
∆t. 
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3.2     Calculation of Level set with re-distancing  
 
In the implementation of the geometric mass-preserving re-distancing approach [18], adjustments to φ 
are confined to a narrow band of primary neighbour cells about the computed zero isocontour. These 
are shown in Figure 4 as red cells, which amounts to one cell either side of the isocontour. There are 
also a set of secondary, or ‘halo’ cells, shown in pink that surround the primary cells. These provide a 
means of primary- to- secondary cell exchange as the isocontour changes position at each time step.  
 
In order for Code Saturne to achieve this degree of control over each cell in the flow field the authors 
have had to develop a method to determine the connectivity of a cell with the locally surrounding 
neighbour cells. This information is not stored internally in Code Saturne which represents the grid 
using an edge and volume list.  A Fortran-90 module has been developed which derives the 
connectivity information from the edge list in the narrow band of cells surrounding the zero-isocontour.  
Based on this derived connectivity information, a set of primary and secondary cells is generated 
forming the narrow band object seen in Figure 3. The light and dark blue cells form the set of primary 
cells with the isocontour at the interface between light and dark cells. The light green cells are the halo 
cells. This forms the basis of each indexed narrow band object that finally forms a spine of narrow 
band objects as seen in Figure 4.  
 
As the simulated time advances each narrow band object will inhabit different neighbouring cells as the 
scalar values given at the cell centres change. This alters the position of the narrow band tracking the 
interface.   
 
As stated previously the change in φ at each cell centre will arise both from advection of u

r
 and from 

the secondary influence from re-distancing of φ. The process by which φ is corrected can be outlined 
briefly if we consider any cluster of narrow band object nodes such that part of the isocontour  Sh 
involved will be a subset of the set of κ simplexes involved where their φ values change sign. 
 
1 The centres of the Finite Volume cells used in the transportation algorithm to calculate φ form the 
vertices of the triangulation required for the re-distancing algorithm. In Figure 5, the reconstruction of 
isocontour  Sh from calculated values φ will provide the means to calculate the signed distance function 
φ

* at each node in the narrow band. The disagreement between these values form the basis to calculate 
the mass correction  function ψ  as given equation (2) 

2  To obtain the mass correction, a piecewise-constant function ηK is found for each simplex formed 
out of  first neighbour cell centres of the narrow band objects. The difference in volumes defined by φ  
and φ*  would be corrected at each simplex K such that 
 
                                 ∆VK(φ, φ* + ηK) = 0 .                                                            (11) 
 
        where ∆VK is defined as follows 
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                      ( ) ( )( ) ( )( ) ( )( )[ ] xdxxxxV
K

KKK

rrrrr ⋅+Η−Η=+∆ ∫ ηϕϕηϕϕ **,                    (12) 

where ( )sΗ  is the Heaviside function in order that the function is unity if    
 s > 0 and zero otherwise. The value of ηK is then determined by a false position method to obtain ηK for 
that particular simplex.  Ultimately, considering ∆V for the set of κ simplices in this region would 
suggest a set of simplex-wide solutions of ηK   
 

                ∆V ϕ,ϕ*( )= ∆V
K

ϕ,ϕ*( )
K∈Κ
∑                                                                (13) 

In view of the discontinuous nature of ηK  a node wide solution ξ I is sought at each node I         
 
3 The simplex wise contributions ηK at each node of the first neighbour cells, which are a part of the 
simplexes in the narrow band, are then averaged at each node to provide a node-wise correction such 
that 

                                     ∑= K
I

I N
ηξ 1

 ,                                                                 (14) 

                                      ψI  = C Iξ                                                                            (15) 
 
where NI is the number of simplexes that contain the node I which the Kth   simplex is a part of, and C 
the constant that preserves the mass conservation of  φ globally such that 
 
                                            ( ) 0, * =+∆ ξϕϕ CV                                                       (16) 
 
The solution of equation (16) to find C again involves a false position method. 
 
4 The mass corrected values of φ amongst all nodes of the first neighbour cells will now provide a 
boundary condition for the re-initialisation of φ on the rest of the mesh points in the halo cells. If we 
consider just the halo cells with φ positive, for say a ℜ set of halo nodes in which Ih ℜ∈ , we use a 
distance along an edge approximation such for Ih such that 
 
                      |]|)([)( min

JIJCJI
XXXX

hI

rrv
++=

∈
ϕϕ                                                 (17) 

 
 where CI is a set of nodes that are connected Ih but Ih

th node is not included in the CI set of nodes but 
( )ℜ∪Ρ⊂IC , Ρ  being the set of nodes associated with κ simplexes. Equation (17) provides an edge 

distance approximation. For each simplex, and for each node J of the simplex at positionJX
r

, φ is 

interpolated linearly on the opposite face FJ  ( see Figure 6), using the current values at the nodes 
generated by the earlier stage involving the first neighbour cells. Then, a tentative new value ηJ at node 
J is calculated such that 
 
                     |]|)([min xXx

hJ
IFxJ

rrr
r

++=
∈

ϕη                                                         (18) 
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                            ( ) JJX ηϕ =
r

 if ( ) JJX ηϕ >
r

                                                              (19) 

 
5 As a result of the re-distancing routine given above, some of the primary and secondary neighbour 
cells of the narrow band have altered. New cells will have to be inhabited and old cells evacuated as a 
result of the change in position of the isocontour. The result of re-distancing can be seen in figures 7(a) 
and 7(b) showing a map of ϕ∇  over the flow field from the submerged 2D cylinder. In the narrow 

band region surrounding the isocontour for φ = 0, indicated as a black wavy line, mass conservation is 
maintained. This indicated by ϕ∇  = 1, seen as light green regions in figure 7(b). In the case where no 

re-distancing is done, as shown in Figure 7(a) , the isocontour is not surrounded by the light green 
mapping as much as is the case with Figure 7(b). 

 
 
 

3.3     Calculation of slope and the curvature at t he free surface 
 
If we consider the particular position on the free surface indicated by a green dot in Figure 8, the 
process to calculate the normal at this point involves two sets of Ns stencils formed above and below 
the green dot. If we define the slope at the green dot, which is seen on Figure 8, indicated by n̂ its value 
will be the mean of 

j
n̂ calculated from each of these two Ns stencils. (Note in figure 9 shows an Ns 

stencil for 
j

n̂  above the free surface). Hence for n̂ we get 

 
                     ( ) 2/)ˆ()ˆ(ˆ 21 jj nnn +=                                                                                                   (18) 

 
To calculate the gradient ϕ∇  at the j th node, which is the parent cell of one the set of Ns stencils near a 

free surface position, has used a Gradient Smoothing Method (GSM) approach as outlined by Barth et 
al and Liu et al [22-23] is used. The GSM approach used by the author involves using neighbouring 
nodes F, (where F = F1, or F2, …), as shown in Figure 9. This requires a 9 cell stencil for 2D flow, or a 
27 cell stencil for 3D flow.  Applying Divergence Theorem to the 9 or 27 cell stencil scheme we get for 
∇ϕ j  
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sn
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1

1

0

,2/ˆ
11

lim ϕϕϕϕ
                  (19) 

 
where ∆Q is the volume of fluid contained in the pink region of the Ns cell stencil, ∆A is the total outer 
surface area of this region, i

j
n̂  is the surface normal of a discretized surface region, ∆sj

i ∈ ∆A. (Note 

scalar ϕj
i at node i is part of the Ns-1 nodes of the Ns cell stencil, which forms part of in the trapezoidal 

integration method approximating line-integration). 
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The slope calculated in Equation (14) suffers numerical oscillation effects in an unstructured mesh 
scheme [22, 23]. To prevent these oscillations, the largest allowable value of limiter Ψj is sought, 
which imposes a “monotonicity principle” on the calculated slope values of ϕ at the j th free surface 
position. This means Ψj must not exceed the extrema of the ϕj

i from the neighbouring nodes which 
includes the parent node Ns. To find this we start by calculating ϕj

min and ϕj
max from each of the 

neighbouring nodes scalar associated with ith node of the Ns stencil i.e 
                                   
                       ϕj

min  = min(ϕj
Ns , ϕj

i ) of i = 1, Ns                                                      (20) 
                       ϕj

max  = max(ϕj
Ns, ϕj

i ) of i = 1, Ns                                                     (21) 
 
The next stage is to consider the value of ϕj

i at each mid point on the line connecting a neighbouring 
node the central node Ns which has value of ϕj

i  = ϕj
Ns, i.e. ϕj

mid(i) = (ϕj
i + ϕj

Ns)/2. Now if the solution of 
limiter is found at these (Ns – 1) mid-points on the parent cell boundary we get 
 
 
 
                         

   
 
if  (ϕj

mid - ϕj
Ns ) > 0 

  

 
if  (ϕj

mid - ϕj
Ns ) < 0 

 
j = 1, 
…,Ns 

 
(22) 
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if  (ϕj

mid - ϕj
Ns ) = 0 

  

   
Finally the limiter for the j th free surface position becomes  
 
            Ψj  = min(ϕj

mid(1), ϕj
mid(2),…., ϕj

mid(i),…., ϕj
mid(Ns-1))                                         (23) 

 
Therefore the modification to the expression for the slope in equation (14) now becomes 
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ψ

ϕ                                    (24) 

The above GSM is similar to what is available in Code saturne in the form of the function grdcel . The 
grdcel function can offer either an iterative GSM or Least Square method to calculating the gradient. This is 
achieved by setting the appropriate value for the variable IMGRA. Unfortunately grdcel does not guarantee the 
speed of calculation or numerical stability that has been described above involving GSM. Only further work will 
determine if grdcel can effectively replace the author’s initial approach to calculating ( )

21
ˆ

orj
n near the free 

surface. 
 

3.4     Calculation methodology for the Ghost Fluid  Method 
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In figure 8, the free surface normals n̂ are known at certain boundary points indicated by green dots. 
Fortunately n̂ from a given green dot can also apply approximately to the actual normal at a free 
surface position indicated by black dot. (The black dot free surface position is formed by the normal 
line through the cell centre position above the free surface, which indicated by a white triangle and 
called a ghost point). These ghost points will receive pressure and velocity values from the image 
positions. From section 2.2 the simplified GFM has been described which states that these interpolated 
values found at the image positions are simply carried over to the ghost positions indicated as white 
triangles. These image values are calculated from a suitable bilinear interpolation method applied to the 
nodes surrounding each image point indicated by a blue triangle in Figure 8.  
In Figure 8, nodes 1 to 4 that surround a particular image point are shown. The grid shown as red grid 
lines will generally be an unstructured grid. For this purpose, the author has used a geometrically 
isotropic bilinear interpolation scheme based on a bi-cubic interpolation scheme proposed by Ii et al 
[25] for each image point. This means that three out of the four nodes which surround the image point 
are selected. The bilinear interpolation scheme will allow velocity or pressure values to be found using 
the linear polynomial 
 
                             ψ(x,y) = C00 + C01 x + C10 y ,                                                              (25) 
 
where C00 , C01  and  C10 are the coefficients of interpolation triangle found from three of the four 
points as seen in Figure 8 such that 
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where ψ may be a velocity or pressure. For 3D flow this would involve trilinear interpolation scheme 
similar to what has been described above, except that a tetrahedral interpolation box would be selected 
out of a hexahedral capture box containing the image point for ϕ(x, y, z).  The eight corner points of the 
hexahedral capture box are made up from the cell centres of cells surrounding the image point, such 
that 
 
                        ψ(x,y,z) = C00 + C01 x + C10 y + C11 z                                                       (27) 
 
                             
From the above interpolation scheme, the pressure (P)R and velocity (uv )R  found at the image points 
below the free surface will allow the ghost pressure and velocity values to be found at the ghost points 
from (P)G = (P)R   and   (uv )G = (uv )R . These new values will populate those ghost cell points covering 
the red band region (Figure 10) of the narrow band strip straddling the newly calculated free surface, 
shown as a black line. The green strip is the region populated with the image points necessary from the 
GFM. The pressures (P)R are only the reduced pressure values and not the total pressures. 
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3.5     Implementing unsteady upstream boundary con dition 
 
In the USCLIM.f90 module, the velocity profiles can implemented over the prescribed inlet face. The 
standard boundary condition is usually a zero-flux condition for pressure and a  Dirichlet condition for 
all other variables. To set a  Dirichlet condition  for the velocity  over the inlet, the functions 
icodcl(ifac,ivar)=1 and rcodcl(ifac, ivar, 1) are used. Where ivar is equal to either iu(iphase), iv(iphase) 
and iw(iphase) for the respective 3D velocity components that have been specified at inlet face ifac at 
time t for a given phase iphase. In case of the investigation iphase =1 since the GFM has reduced the 
two water air interface problem to a single phase problem. 
 

4 Methodology 
 

4.1    A review on previous connectivity modeling  
 
The internal representation of the grid within Code_Saturne has presented some difficulties.  The 
solver represents the unstructured grid using a list of faces with pointers to the left and right control 
volumes, rather than providing a list of control volumes together with their connectivity information as 
required by the re-distancing algorithm.  The first stage of implementation has therefore required the 
development of a set of library routines to compute the connectivity information for the halo cells 
surrounding the interface from the face connectivity list.  These routines have been implemented within 
the CONNECTIVITY Fortran-90 module coded into the preamble of the user routines.  Face 
connectivity information provided by the NBCELL data structure is processed to find adjacent control 
volumes and from these, a set of simplexes is constructed.  Since the grid used is fully unstructured, the 
list of control volumes computed has no implicit order and so must be sorted before re-distancing can 
be performed.  
 
Below is a sample of code taken from the file USINIV.f90, which constructs the connectivity between 
a given cell of index iel and in this case 1 to six neighbour cells associated with each 3D hexahedra 
grid, 
 
 
 
 
!=========================================================================== 
!Building connectivity between particular indexed cell in the flow field and 
!its local neighbour cells. For a hexahedral cell this involves 6 neighbours  
!============================================================================ 
     do ifac = 1, nfac 
        iel1 = ifacel(1, ifac) 
        iel2 = ifacel(2,ifac) 
        switch1 = .true. 
        switch2 = .true. 
        do i = 1, 6 
           if ((switch1).and.(con(iel1,i).eq.(-ihuge) )) then 
              con(iel1,i) = ifac 
              switch1 = .false. 
           endif 
           if ((switch2).and.(con(iel2,i).eq.(-ihuge) )) then 



Not to be disclosed other than in line with the terms of the Technology Contract 
 

Page 18 of 27 
 

 
 
 
 

              con(iel2,i) = ifac 
              switch2 = .false. 
           endif 
        enddo 
     enddo 

 
The connectivity function con(iel,i) developed by the author provides the necessary process of 
indexed cell → local face connectivity, for a given cell index iel and  a randomly selected cell face i . 
To complete the process of  indexed cell → local face → local neighbour cell  connectivity an extra 
piece of coding was needed in the form of another connectivity function developed by the author 
known as nbcell(iel,i). In this initial coding exercise, it has been set up specifically to deal with only 
three dimensional hexahedral meshing by having the number of cell faces restricted to six.  In the next 
stage of development the code will be upgraded to meet any general unstructured polyhedral mesh. 
 
 

4.2    A review on previous Re-Distancing modeling 
 
The re-distancing algorithm has been implemented in several of the user routines, which provide an 
interface to the main Code_Saturne solver. The routine USCLIM.f90, which sets up the boundary 
conditions for the flow, has been modified to allow properly-distanced values of φ to be introduced 
through an inflow boundary. This routine does not need to make use of connectivity information since 
it is applied only to boundary faces. The routine USINV.f90 sets up the initial values of the level-set 
across the entire fluid domain and contains the CONECTIVITY module described above. USINV.f90, also 
sets up the initial data structure containing the narrow band cells surrounding the zero-contour of the 
scalar variable. The initial configuration of the narrow band is set up about the specified isocontour 
position for time zero by using a set of narrow band node elements as seen in Figure 3. These elements 
finally form a spine of narrow band elements as shown in Figure 4a. Each narrow band element 
consists of two primary cells, which are positioned either side of the particular part of the isocontour. 
In addition there are also halo cells either side of the primary. As model time advances, the value of 
Level Set φ will change in accordance with the transport model and the re-distancing algorithm 
(section 3.2). At the end of each time step USPROJ.f90 is called. In this subroutine, the re-distancing 
algorithm is given, and implements the geometric mass preserving algorithm [1]. This algorithm 
monitors and updates the narrow band data structure as the free surface moves across the background 
mesh. The narrow band elements will adapt themselves inline with these prevailing conditions as 
shown Figures 4b and 7b. 
 
The USCLIM, USINV and USPROJ routines, containing self-documented source code, are contained in the 
attached files. 
 

4.3        Current programming strategy  
 
 
Setting up the free surface boundary condition in the narrow band region, as seen in Figures 8 and 10, 
will allow the GFM to reduce the two phase problem of wind and water interaction to a one phase 
problem, by the method outlined in section 2.2. This means the red line region of the narrow band 
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region shown in Figure 10 will be filled with water and given the ghost values of pressure and velocity 
of (P)G = (P)R   and   (uv )G = (uv )R,  where (P)R and (uv )R values are taken from the appropriate image 
points in the green line region of the narrow band region, (Figures 8 and 10). Usually the region above 
narrow band region, seen as region B in Figure 10, is not allowed to be updated by the solver, 
otherwise the solver will interfere with the GFM process and may cause numerical instabilities. This 
approach is widely used in free surface flow solvers for segregated heterogeneous fluids for reasons of 
computational efficiency.   
 
The implementation of this approach has proven difficult due to the nature of Code Saturne’s kernel 
and the lack of available detailed documentation on the kernel’s structure. To implement the 
“numerical vacuum” approach the solver either has to be prevented from updating the flow solution for 
cells containing air, where ϕ <0, or the momentum and pressure equations in this region must be 
modified to 

                                          

∂ui

∂t
= 0

∂p

∂t
= 0

.                                                                           (28)  

 
As an alternative to this approach a stratified flow method will be considered making the field density a 
function of the prevailing Level Set scalar ϕ. This should allow Code_Saturne to process the entire 
flow field in a stable manner, without numerical instability issues occurring in the calculation. It should 
also allow the required GFM process to be performed in the narrow band region, as required for correct 
free surface modelling.  Testing of this approach is still on-going, and results will be presented in D3. 
The geometrically isotropic bilinear interpolation scheme has involved significant coding with a kd-
tree routine to select the appropriate four nodes, as seen in figure 8, with a matrix inversion routine 
required for equation (26). So far, this approach to coding the interpolation process required for the 
image point seen in figure 8 has been stable. 
 
 

5. New Modules  
 
To address the connectivity issues highlighted in Section 4 a set of new library routines has been 
implemented in the CONNECTIVITY module, which is held within the existing Code_Saturne routine 
usiniv.f90. The Level set method using the geometric mass-preserving, re-distancing algorithm has 
been implemented via developments to the existing Code_Saturne routines of USCLIM.f90, USINV.f90, 

USPROF.f90 and USINI1.f90. The source code containing the USCLIM, USINV and USPROJ routines is 
included on the accompanying CD with the modifications made under D2 highlighted. 

6. Results  
 
The re-distancing method has consistently between reliable with all 2D runs without causing failure. A 
qualitative assessment of the re-distancing is presented in figures 7a and 7b, which maintains the  ϕ∇  
= 1 requirement near the isocontour. This is an essential requirement before any GFM is conducted. 
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Test work with the new code associated with the Ghost Fluid Method has been stable, particularly with 
the geometrically isotropic bilinear interpolation scheme, but verification with experimental data has 
not yet been performed.  
 
 
 

7.  Conclusions  
 
 
The work package objective of WG3 WP2 D2 was to implement a Level-Set free surface model capable 
of performing a free-surface boundary condition and unsteady upstream boundary condition with 
Code_Saturne. So far, significant progress has been made to achieve this, but further work is needed on 
the stratified field approach as a work-around to the obstacles associated with the inaccessibility of the 
kernel of Code_Saturne. The success of this will be covered in the next deliverable of D3 through 
verification with experimental data.  
 
 In the last deliverable D1, cell connectivity and re-distancing were achieved with its success seen in 
figure 7. The major developments since D1 have been in coding the Gradient Smoothing Method, 
which is necessary for the calculation of geometric features of the free surface, and coding the Ghost 
Fluid Method. The GFM has proven difficult to achieve in view of the lack of advice available to 
reprogram the kernel of Code Saturne in the way highlighted in section 4.3. The geometrically 
isotropic, bilinear interpolation scheme employed in the GFM has shown itself to be a stable method. 
The stratified flow approach will need some care to avoid issues with numerical stability near the 
interface region of the flow field.  
To demonstrate the required functionality of the modifications featured in this deliverable, a set of tests 
is planned as indicated in Figure 11. The results of these tests form the main content of deliverable D3. 
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Figure 1: The definition of the signed distance function φ* (Image based on reference [15]) 

 

Figure 2: Sorting neighbour cells surrounding centre cell “iel” with attribute θ angle between vectors A
r

 and 

B
r

which pass though the centre of these neighbour cells. 

 
Figure 3: Schematic drawing of the finite volume discretization cells, (shown in dotted lines), and the associated 
triangulation, (shown in black lines lines), for the re-distancing algorithm [18] 
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                     (a) At time t = 0                                                                  (b) t >0 
Figure 4: A narrow band evolution with time without GFM involved: The dark red cells form the set of primary 
cells, with the isocontour between the two horizontal bands of dark red cells. The light red being the halo cells 
with the blue line being the isocontour tracking a streamline at t = 0 and t > 0. 

 
Figure 5: Schematic drawing of the finite volume discretization cells, (shown in dotted lines), and the 
associated triangulation, (shown in black lines lines), for the re-distancing algorithm [18] 
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Figure 6: Schematic drawing of step 4 involving update of scalar φ( X
r

I) using φ values from first 
neighbour cells 

 
(a) Without re-distancing 

 
(b) With re-distancing 

Figure 7: Map of ϕ∇  for level set calculation with and without re-distancing. The black thin wavy lines 
shown in (a) and (b) are the iso-contours at time step 400. The colour range on each graph is from 

9.0=∇ ϕ  to 05.1=∇ ϕ . 
 

 
Figure 8. Ghost-cell scheme. (Black circle • represents the free-surface boundary point while the white-green 
and blue triangles represent the ghost and image points respectively.) 
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Figure 9: Nine cell stencil indicated in pink for the calculation of  ϕ∇   using a Gradient Smoothing 

Method at point F9 on the free surface  shown as a blue line. 

 
Figure 10: Regions in the water/air flow field: - Region A (water), narrow band region (red and green 
lines), calculated free surface (black line between the read and green lines) and region B (air). 
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Figure 11 Details of verifications tests for D3 

 

 


