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Executive Summary

The UK's commitment to an 80% reduction in greenhouse gas emissions by 2050 and 34%
reduction target by 2020 will require significant carbon reductions from electricity, heating
and transport. While there is no single solution, Distributed Energy (DE) offers a proven way
to maximize the efficient use of our natural resources for heating, electricity and cooling
delivery. Deployment of DE is a cornerstone of the UK Government energy policy and is
strongly supported by Regional Development Agencies (RDAs) and Local Authorities,
however there is no clear pathway for achieving the targets and requirements for efficiency
nationwide.

The goal of this project is to characterise the temporal energy demand across a complete
geographic subdivision of the UK and link the supply capabilities of DE equipment through a
software tool to develop optimized DE Solutions.

The transition from small-scale, site by site based DE solutions within a region to medium to
large-scale DE schemes has the potential to overcome a number of technical and commercial
challenges. For example, the aggregation of a diverse range of end user energy demand
profiles will assist in levelling demand fluctuations and has the potential to improve the
economics and operability of distributed energy systems.

Based on a method developed by EDF and data that EDF has sourced, the approach has
produced aggregated demand results that have been compared with 2 sources of data from
real measurements. Annual energy demand has been calculated across the district of
Harrogate, compared with DECC consumption data and plotted as error scatter graphs. The
results showed random errors in residential thermal demand calculations of approximately
10% (annual electric demand will use DECC’s data directly). The tertiary demand calculations
contained a larger uncertainty of approximately 30%. Hourly thermal load has been
calculated for a district heating project, “CHP Ops”, and compared with the measured load
to give an indication of the likely hourly and daily prediction error. The results on residential
load showed an error of 13% at a daily level and 22% at the hourly level. The tertiary
predictions had larger errors but the building sample was too small to draw sound
conclusions from.

We believe that the methodology for the residential thermal demand is sound and there is
sufficient data such that a 10% uncertainty is reflective of the potential propagating error for
the UK. While the tertiary sector data methodology is sound, there are two key issues with
the data sets that may cause the larger error:
1. The registered company information databases used in the tertiary sector demand
calculations contain many records that are missing the number of employee data;
2. Conversions between employee numbers and building floor area can only currently
be performed at large tertiary sector groupings.
The contribution of demand uncertainty from the tertiary component could be projected
and tracked in the resulting demand calculations.



The temporal resolution of the demand is good and the method, based on energy
transporter load prediction techniques, seems able to predict the main trend and features of
residential thermal demand.

In a separate report, a recommendation was made to purchase CreditSafe’s registered
company database due to its better overall accuracy of key indicator data for the tertiary
sector.
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Glossary

Term Definition

Benchmark An energy benchmark is an expected value for energy consumption. For
residential and non-residential sectors these benchmarks are either collected
from CIBSE or are derived from EDF proprietary data.

CIBSE Chartered Institute of Building Services Engineers

Combined Heat and
Power (CHP)

The production, supply and use together of electricity and heat.

Demand Centre

Premises having an Energy Demand. (See also Site).

Distributed Energy
(DE)

Distributed Energy systems are those systems supplying energy, which as a
minimum may include electricity, heat and/or cooling, locally and/or directly into
the electricity and heat distribution systems (rather than the transmission
system).

Medium to Large
Scale DE Systems

For the purposes of this Project, Medium to Large Scale DE Systems are
defined as those generating or consuming, individually or when aggregated,
100 kWe— 50 MWe. The scope of Zonal DE Systems considered shall include
as a minimum: prime movers and generators of electricity and heat; generator
connections to the electrical and heat distribution systems; Zonal heat
distribution piping; Site connections to the electrical and heat distribution
systems; and Site and Zonal metering and control systems.

Energy Demand

A demand for energy, which as a minimum may include electricity, heat and/or
cooling.

Excess Heat

Residual heat potential that can be offered to third parties (e.g. heat network,
other company, ...) after internal use on the industrial site.

Energy Supply

A supply of energy, which as a minimum may include electricity, heat and/or
cooling.

Geographical Area

The areas defined by existing geographical and statistical divisions of the UK
i.e. Middle Layer Super Output Areas (MLSOAs) for England and Wales, and
Intermediate Geographical Zones (IGZs) for Scotland.

1GZ Intermediate Geographical Zone

Indicators Indicators are basic parameters that are directly related to energy demand and
represent the basis for energy demand calculations. The residential and non-
residential energy indicators are collected from EDF as well as from commercial
data vendors.

ISIC International Standard Industrial Classification

LLSOA Lower Layer Super Output Area, as defined by UK Government

MLSOA Middle Layer Super Output Area, as defined by UK Government, is part of
geographic hierarchy that covers England and Wales. Every MLSOA consists of
minimum 5000 population or about 2000 households. More information at:
http://www.berr.gov.uk/files/file40044.pdf

NACE Classification of Economic Activities in the European Community

NAF Nomenclature des Activités Francaises (French NACE)

SIC Standard Industry Code

Zone A Zone is a combination of Sites whose Energy Demand may be aggregated,

typically in the range 100 kWe — 50 MWe, to enable optimised Distributed
Energy delivery solutions.




1. Introduction — background, objectives and scopes

1.1. Background

Increasing awareness of cost effective energy systems, highly efficient energy use, secured
energy supply as well as concern about CO, emissions are encouraging policy makers and
energy companies to search for alternative energy solutions in the United Kingdom (UK).
Distributed Energy (DE) and Combined Heat and Power (CHP) can help to achieve these
goals. By identifying site specific and locally sourced energy demand patterns and potential
waste heat sources, it is possible to aggregate demand zones of similar pattern. In this way
the deployment of DE or CHP systems becomes more cost effective and environmentally
efficient.

The broad objective of the Macro-DE project is to assess the opportunity for providing low
carbon distributed energy solutions for similar aggregated energy demand zones across the
UK. This project will investigate current approaches to demand aggregation, calculate energy
demand profiles and recoverable industrial waste heat across the UK. After identifying about
10 — 20 “characteristic” demand zones, it will estimate the deployment and CO, reduction
opportunity for DE systems in those zones and calculate the UK benefit due to a zoning
approach and the use of waste heat.

1.2. 2.0 Task Objectives
The main objective of this task is to develop and estimate the level of confidence in a
methodology for energy demand profile calculations. The specific objectives are to:
e Develop a methodology to calculate energy demand on an MLSOA basis and to check
whether this methodology is scalable to the whole UK.
e Carry out statistical analysis to quantify the level of uncertainties within the result
e Validate the result
e Recommend on the refinement of Task 2.1 and 2.2 methodologies
e Compare the MarketSafe and GeoPlan registered company datasets (provided in a
separate report).
The acceptance criteria for the task are described in Appendix 1.

1.3. Scope of the study
In scope:

e Thermal and electricity energy demand methodology of the residential and tertiary
sectors per MLSOA

o Development of hourly load demand for residential and tertiary sectors

e Development of a methodology to assess the industrial waste heat and its scalability
across the UK

e Aggregated annual and temporal energy demand for sample MLSOAs

e Predicted load on a district heating network

e Statistical analysis and validation of the result (quantification of uncertainty)

e Comparison of MarketSafe and GeoPlan UK company data
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e Areport detailing all the methods and analysis of results

Not in scope
e Cooling energy demand for tertiary sector
e Industrial demand
e Waste heat profiles

1.4. Structure of the report

In Section 2, demand modelling methods are discussed.

In Section 3, the methodology to calculate the residential, tertiary energy demand is
explained. A specific section is devoted to methods for aggregated residential thermal
demand profiles. An approach to calculate the industrial waste heat across the UK is also
proposed.

Section 4 describes the data sets used in the demand calculation methodology.

Section 5 describes the validations performed against measured data.

Section 6 describes the statistical analysis to identify and to quantify the uncertainties/errors
within the methods and results.

Section 7 discusses the outcomes of the statistical analysis, the confidence in the demand
methodology by component and reviews further potential validation datasets.

Sections 8, 9 and 10 draw conclusions, provide a number of recommendations for further
investigations and describe the next tasks.

1.5. Additions in Version 2.0 - extension work on the Demand Methodology

This version of the report builds on version 1.0 and describes the extension of the originally
proposed demand calculation method. The additional elements in this report are listed
below.

- A detailed description of residential thermal demand modelling — sections 2 and 3.4.
- Animproved residential electric demand method — section 3.2

- A method for restoring tertiary indicator data — section 3.3

- Detailed residential and tertiary demand profiles — section 4.4

- Validation of the temporal demand prediction — section 5.2

- Statistical analysis of the temporal prediction accuracy — section 6.5

- Adiscussion of the level of confidence that the method delivers —section 7.2

- Areview of potential validation sites — section 7.3

In addition, most of the sections have been revised and further detail has been added in six
Appendices.



2. Demand Modelling Approaches

2.1. Forward modelling

The different models available can be differentiated by their approach. The forward or
classical approach is applied to predict output variables. With readily available computing
power, complex models have been realized along this line of thought to include natural
phenomena and interactions within the system. A forward approach delivers a more or less
complete representation of the physical world (ASHRAE 2005). Heller (Heller 2002) classifies
this category as deterministic modelling. On the scale of buildings it is the most common
approach to describe and predict the energy use. This category of models includes dynamic
thermal simulations such as EnergyPlus, DOE-2 and TRNSYS (ASHRAE 2005) as well as steady-
state or quasi steady-state models as specified by EN ISO 13790. This approach is sometimes
also referred to as a white box model with the limitation that a pure white box model could
be seen as a copy of reality and therefore cannot exist (Tarr 2009).

WEATHER LIBRARY

Dry-bulb temperature
BUILDING DESCRIPTION Wet-bulb temperature
" Cloud factor
Location h
Design data ‘;de speed
Construction data ressure
Thermal zones LOADS
Internal Ioa_ds ANALYSIS
Usage profiles
Infiltration
healig ang | Peak heating and
cooling loads | ©00ling loads
SYSTEM DESCRIPTION
System types and sizes SYSTEMS
Supply and return fans ANALYSIS
Control and schedules
Qutside air requirements
Hourly equipment
loads by system
PLANT DESCRIPTION
Equipment types and sizes
Performance char st PLANT
Auxiliary equipment ANALYSIS
Load assignment
Fuel types
Fuel demand and
consumption
ECONOMIC DATA
Economic factors ECONOMIC
Project life ANALYSIS
First cost
Maintenance cost l Life-cycle cost

Figure 1. Flow chart for building energy simulation program; (ASHRAE 2005) after (Ayres, Stamper
1995)

Despite the great variety in the complexity of the forward models, the general principle for
estimating the energy requirements, as depicted in Fig. 1, consist of the load calculation
which is then translated into a system or secondary equipment load that incorporates losses
in the distribution and auxiliary systems. Finally the primary energy requirements are
calculated i.e. the requirements of the energy conversion system using fuel or electric
energy. Adding economic data to the model allows for the economic analysis of the system.

2.2. Data-Driven modelling
In contrast to this the data-driven or inverse approach uses input and output variables that
are known and measured to determine a mathematical description of the system. This
obviously requires that the system has already been built and measurements have been
made. In practice data-driven models tend not only to be simpler to use but also more
accurate (ASHRAE 2005).



Amongst the data driven modelling approaches a widely used approach is the empirical or
black box approach (Heller 2002). A black box model defines the input output relation
without describing physical properties of the modelled process. Black box models are fast
but sometimes inflexible in their application. Therefore by their empirical nature these
models do not require an understanding of the underlying processes. Once established and
tested they therefore do not require a large knowledge on the user side.

2.3. Mathematical description

While the description of forward and data driven approaches includes concepts of stochastic
and non-stochastic models, an important distinction regarding mathematical descriptions
are steady-state and dynamic models (Koch, Harnisch, Blok 2003).

Steady-state models include single-variant models typically using ambient temperature as
the one regression variable. To adapt the function to the actual operation these can include
one parameter only or multiple parameters. On the other hand dynamic models are used
with hourly or sub hourly data for those applications where the effects of the building’s
thermal mass play a significant role. While dynamic models are useful for detailed
description of the system and the interrelated effects within, dynamic models tend to have a
higher complexity and require more detailed data for data-driven as well as for forward
models (ASHRAE 2005).

2.4. Top-down vs. bottom-up strategies

In the wider discussion of modelling approaches, the classification of top-down and bottom-
up approaches are used. These reflect the detailed descriptions of individual entities in the
system (bottom-up) or the description of the overall system where only conclusions
concerning the central system can be drawn (Heller 2002). Even though many examples of
top-down modelling apply data-driven models while bottom-up strategies tend to employ
forward models in principle the differentiation refers only to the internal set up of the
model.

Related to this wider discussion of a model’s strategy is the general objective. Simulation
models usually apply a bottom-up approach to describe the energy system by adding single
processes to process chains or networks. In contrast optimization models tend to focus on
the cost function. Usually simulation models are applied to quantify the technical or techno-
economic potential for energy savings or emission reductions (Koch, Harnisch, Blok 2003). In
the detailed description of simulation models expert knowledge replaces the purely
mechanistic approach pursued by optimization models. Thus technical measures can be
discussed on a more detailed level. Even though the approaches follow clearly different
paths (Koch, Harnisch, Blok 2003) it should be noted that with an increasing number of
bounds, the optimization approach is eventually transformed into a simulation.

In the following, a demand calculation based on benchmarks and indicators is described. This
is combined in a second step with a distribution model using annual energy demand values.
These are the output of the demand calculation as an input value to generate a profile
consisting of daily demand values over one year. The energy signature model used is further
described in Section 3.4.
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3. Trial methodology of energy demand calculation

3.1. Proposed Trial Methodology

The annual energy demand is calculated separately for each of the many residential and
tertiary sectors separately for the thermal and electricity demand. The energy contributions
from the sectors are then distributed by associated normalised profiles. The normalised
profiles are scaled by the energy contributions associated with them. Afterwards, these are
all combined to give the total thermal and electrical load curves for the sites within a
specified region.

Equation 1 below describes the calculation of the energy demand (thermal or electric):

temporal energy demand =
D sector 2 sites (indicators x factor x benchmarks) x (profile) (D)

The Indicators, such as number of residential buildings or number of employees working in
tertiary sectors, consist of basic data that are directly related to energy demand. The
Benchmarks are median standards for energy intensity values (collected from secondary
sources or derived for this trial) that convert the indicator data into energetic values.
Conversion Factors may be required to change the indicator variable into the intensity
factor; for example number of employees into floor area. The Profile data is a normalised
series of values that distributes the annual demand temporally.

Figure 2 describes the general method applied to estimating annual demand in this study.

Indicators Benchmarks
\

= V Y 4
Re]
© Residential Tertiary Industrial waste
il
‘_§ energy energy Heat
E | | L
i) A J Y l i
[
>
g Thermal Electricity Thermal Electricity
©
.9
5 |
k)
%) | L

Total thermal Total electricity Industntal :xc;ess

energy demand energy demand WERD W]
supply

Figure 2. Trial methodology approach for the calculation of annual demand
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3.2. Residential Energy Demand

The residential energy demand is calculated based on Equation 1. This section explains the
detailed use of different indicators and benchmarks data in the calculation (Figure 3).

Residential thermal demand is mostly dependent on the number and type of buildings in a
region. Therefore, residential housing stock data for all the MLSOAs in the UK is collected
from EDF Energy UK. This dataset is categorised according to five housing types and seven
age classes (see Section 4 for further details).

The housing types are matched to corresponding residential benchmarks for thermal
demand. The benchmarks have been extracted from values developed for a proprietary EDF
tool that can predict customer savings from energy efficiency measures (see Section 4 for
more detail on these benchmarks). The tool uses detailed information on the housing types,
number of bedrooms, construction ages, electricity and gas consumption, etc. Considering
an average gas boiler efficiency of 80%, a total of 35 thermal benchmarks are derived.

The benchmarks are then weather adjusted per region according to the approach in CIBSE’s
TMA46 guidelines (CIBSE 2008), which uses a pro-rated degree-day (base 15.5 deg C) scaling.
The thermal scaling value recommended for residential buildings is 55%.

Electricity demand was initially calculated according to the same approach, shown in Figure
3 below. In the revised, extension, method the residential electric demand is decomposed
according to tariff: Standard or Economy7. These two consumption classes are compiled by
DECC per MLSOA (DECC, 2008) and can be used directly without needing extra electric
demand benchmarks.

A set of hourly residential profiles were used to distribute the annual residential demand by
day and year. In each case, the total demand was associated with the appropriate profile
class. Typically, the total annual demand is more sensitive to building type or other indicator
than the normalised profile. For example, 35 classes of building are considered when
building up the annual demand but only 4 broader classes of buildings are needed to capture
profile differences. Therefore, the annual demand is mapped into profile classes. The
description of residential thermal profiles is described separately, in greater detail, in
subsection 3.4.

For the residential electric demand the mapping of annual demand into profiles is
particularly elegant. Grid forecasts use residential profile classes (see Section 4)
corresponding to Standard and Economy-7 tariffs and the total annual demand can be
mapped into these directly.

Table 1. An example calculation of annual thermal demand for residential buildings in one
MLSOA.Table 1 below provides an example of the calculation of annual thermal energy
demand of semi-detached houses that were built during 1901 — 1920 in the Harrogate 015
MLSOA.

Indicators Benchmark Demand
Houses in Harrogate | Average floor Thermal Thermal Demand in
015 area benchmark Harrogate 015
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semi-detached
(1901 - 1920)

(1901 — 1920)

semi-detached

semi-detached

(1901 — 1920)
Weather corrected
using CIBSE TM46

semi-detached
(1901 - 1920)

73 x

96 m? x

188 kWh/m?2

= 1.3 GWh p.a.

Table 1. An example calculation of annual thermal demand for residential buildings in one MLSOA.

Housing stock
(5 house types, 7 age classes)

Average floor area
(5 house types)

EDFE survey

consumption of Gas and

data on EDFE profiles

Thermal and electricity

m?2

benchmark

CISBE guide

No of houses m2 Electricity
A J Y
5 hous-le—c:;/a;l)leloc;razr:ilas%s) Weather correction of thermal Development of Thermal and

according to (|

Electricity Benchmark
(5 house types, 7 age classes)

_

|

o

Normalised profiles
Thermal and electricity

Weekday, weekend,

monthy, seasonal

Residential thermal Residential Thermal
energy demand Benchmark
— | (5 house types, 7 age classes) |-«—— (5 house types, 7 age classes)
KWh KWh/m2/yr
Residential electricity Residential Electricity
energy demand Benchmark
(5 house types, 7 age classes) |« — (5 house types)
KWh KWh/m2/yr

___

Total residential energy
demand
(Thermal and electricity)

KWh

Y

Scaled profiles
Thermal and electricity

Weekday, weekend,
monthy, seasonal

Weekday, we

Residential energy demand
profiles for MLSOA
. (Thermal and el

monthy, seasonal

ectricity)

-t

ekend,

Indicators

Benchmarks

‘ Profiles ‘

Energy demand

MLSOA energy demand
profiles

Figure 3. General methodology to calculate the residential energy demand

3.3. Non-residential Energy Demand

The non-residential energy demand (i.e. tertiary sectors including offices, hotels, schools,

retail, etc.) is also calculated based on Equation 1. The detailed description of the
methodology is described below.

The number of employees working in each business site is considered as the prime indicator
of tertiary energy demand. This information is collected from the Marketsafe database
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described further in Section 4. This data set also contains information on the business
activity of the registered company site using a UK SIC (Standard Industry Code) code. The
approximately 900 5-digit SIC codes are mapped into 29 broader energy demand classes
defined in CIBSE’s TM46 guide (CIBSE 2008).

The number of employees according to each site SIC code is mapped into a subtotal for each
of the 29 energy demand classes. The number of employees subtotals are then converted
into the total floor area for those classes - by multiplying with conversion factors which are
collected from EDF and other sources of tertiary sector intelligence (the conversion factors
are described in greater detail in Section 4).

Tertiary indicator restoration: In the revised, extension, method an extra step has been
developed to estimate the employee number indicator data when this is missing. As later
sections will discuss, a significant number of limited companies omit this data. The
restoration method, described in Appendix 2, estimates the missing data from nearby sites
of the same business activity. If there are an insufficient number of indicator data points in
same MLSOA to obtain a useful estimate, similar company sites at the whole district level are
analysed.

The electricity and thermal benchmarks for 29 tertiary sectors are given by CIBSE’s TM46
guide (CIBSE, 2008). These benchmarks (both electric and thermal) are weather
compensated by regional degree-days in the same way as the residential thermal demand.

The tertiary thermal and electric demand are distributed over the year using Profile data.
The profile data sets are assembled from BDEW gas and electric utility profiles and from EDF
tertiary profiles developed for designing CHP systems. The profile sets are described further
in Section 4.

Figure 4 below gives an example of a tertiary sector annual demand calculation for the
Harrogate 015 MLSOA .

Marketsafe Company SICs

Publishing of books and music

Cargo handling and travel agencies

Post and telecommunications Indicator: Indicator Benchmark Thermal Demand
Banking and finance

Insurance and pension funding Employees Floor Area TM46 Thermal Harrogate015

Broking and fund management conversion benchmark,
Real estate activities i General Offices General Offices i

General Offices General Offices
Renting of self-use equipment
Computer and related activities 2269 230 95 50
Research and development employees mz/employee kWh/m2 GWh p.a.

Public administration activities

Other service activities

International organisations and
bodies

Figure 4. Example calculation of Office Thermal Demand for a Harrogate MLSOA
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Non-residential facilities Canversion o CpEEs &
(SIC and Employee) B A rfg?(oggrse;:tors CI?hSE' E?F %enlchrtn'ar_l: fog EDF and other profiles
(Approx. ) zrma anzoe ectncn Yy Thermal and electricity
No of facilities m2 (2pprox320jsectors)
Y
Total floor area
(sIc) |
m2
N idential th | Non-residential Thermal NoIESEE| i s
on;:eesrl er:jlez:lnanzrma e Thermal and electricity
PN gy <
Weekday, weekend
2 ’ ’
(% DV monthy, seasonal
Y
Non-residential electricity Non-resElgtéir;tAamI:Ikectncny - Scalled :"Olf“ets_ 0
ermal and electricity
energy demand
KWh Weekday, weekend,
KWh/m2/yr monthy, seasonal
Total non-residential energy
demand

(Thermal and electricity)

KWh

Non-residential energy
demand profiles for MLSOA
(Thermal and electricity)

Weekday, weekend,
monthy, seasonal

ol

Indicators

Benchmarks

‘ Profiles ‘

Energy demand

MLSOA energy demand
profiles

3.4. Modelling Temporal Residential Thermal Demand

A two level model is used to distribute the annual demand over a year. First, an energy
signature is applied to distribute the demand over each day of the year. The model used
here was developed by Geiger and Hellwig (2002) and can also be referred to as a single-
variant model as it relates the mean daily thermal load to the mean outdoor temperature. In
a second step, a black-box model approach is used to distribute the daily demand into
hourly profiles. The profiles consists of a temperature-dependent statistic standardised

hourly demand for different building types.
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Figure 5. Methodology for tertiary energy demand
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Figure 6: De-normalised energy signature model for individual households, source Koch 2010

Daily Thermal Demand

The sigmoid function (energy signature) is a result of research at the TU Munich and was
further specified by BGW (2005). It is regarded as representative for current practice in the
German gas market (KEMA 2009). Only few gas supply companies use other profiles than the
one described here (ibid. 2009). In the German gas market, supply companies are obliged to
apply an estimation for non-metered customers which have a maximum power consumption
of 500 kW and a maximum annual gas consumption of 1.5 mil. kWh (GasNZV1). The level of
precision of such a methodology to estimate the future gas consumption is obviously of high
economic relevance for gas supply companies. (Eichlseder 2008) tested the transferability of
the method to the Austrian market introducing the sigmoid function to be applied for the
load prediction. In the assessment (Eichlseder 2008) points out two possible strategies to
verify the results. On the one hand a bottom-up comparison with measured data is proposed
which essentially rebuilds the energy signature with measured data of individual sites. For
the residential sector in Austria 26 annual measurements were used with a total of 9625
usable daily values. In addition a top-down assessment was proposed using data from more
than one hundred thousand gas customers. While both approaches showed a good match of
measured data and predicted energy use it must be noted that with both possible
approaches to test the reliability of the model’s prediction past measured data was used.
Depending on the purpose of the modelling therefore the question of which temperature
data-set (e.g. TRY) is used for the load prediction becomes highly relevant as it includes an
uncertainty that can not be excluded. Obviously, however, this is true for any modelling
approach as even physical building models are limited by the prediction of weather
conditions.

In the proposed signature model and load profiles, Geiger and Hellwig (2002) and Hellwig
(2003) argue that above a size of 15 individual users (i.e. households) the confidence level of
the energy signature improves substantially so that this level of aggregation could be termed
a collective in the sense of the study. This was found to be consistent with prior studies
(Grohmann 2000) conducted at the TU Munich. In the course of the data evaluation

! The ,,Verordnung iiber den Zugang zu Gasversorgungsnetzen, Gasnetzzugangsverordnung (GasNZV)” is the
German law regulating the access to gas networks
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conducted by Geiger and Hellwig (2002), therefore, only measurements from a collective of
more than 20 individual households are included in the residential sector.

In the study more than 20 collective measurements each containing over 20 individual
households were used that were distributed over the whole of Germany to avoid specific
socio economic or regional characteristics. Climate data of the Deutscher Wetterdienst was
used.

Figure 7: Distribution of all data sources used for the study of Geiger (2002) and Hellwig (2003) (note:
these contain also non-residential measurement points)

As a starting point parameters used in the steady state calculation of residential heat
demand were included to arrive at reasonable assumptions on the shape of the curve and
namely the dependency of the heat demand on the outdoor temperature, as depicted in
Figure 8. In their development, the profiles for different sectors were checked against the
gas consumption data of nine energy utilities mains supply and resulted in an error of slightly
above 10% in eight cases demonstrating that the various sectors were well represented and
the aggregation of the different zones was consistent with the real values for the supply
network.

The daily demand sigmoid function takes a generalised form for all buildings in a temperate
climate, following the general argument of Hellwig (2003). The ISO standard equations for
heat transfer through transmission and ventilation establish the approximately linear
temperature dependence of the heat demand.

Heat transfer through transmission
Qtr = Htr,adj (eint,set,H _ee ) t

Hir agj total transmission heat transfer coefficient of the zone
Bint set 1 set temperature for the zone

R outdoor temperature

t time
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DIN EN ISO 13790:2008-09 (equation 16)

Heat transfer through ventilation
Qve = Hve,adj (eint,set,H - ee ) t

Hye,adj total ventilation transfer coefficient
Bint set 1 set temperature for the zone

R outdoor temperature

t time

DIN EN ISO 13790:2008-09 (equation 20)

The linear dependence of the heat demand on the outdoor temperature is represented by
the yellow diagram in Figure 8. In addition, the almost-linear relationship of heat transfer
through ventilation is included in the dotted blue line. Here based on prior studies (Geiger,
Rouvel 1988) it is assumed that the ventilation rate decreases with lower outdoor
temperatures. The green diagram represents a diminishing boiler efficiency with higher
share of part load operation in summer. Finally the solar gains are included in the set of
assumptions. The curving violet line is only considered to a degree, as heat gains will not be
usable in summer and eventually can result in cooling loads.

Air exchange
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Figure 8: qualitative description of the dependence of heat demand from climatic influences, source: after
Hellwig 2000

In the application of a prototype for a grey-box model for the energy demand in urban
neighbourhoods, the comparison of steady state calculation and energy signature delivered
similarly shaped distributions of a given annual demand (Koch 2010). Hence in the
framework of the MACRO DE project the modelling relies on this tried and tested daily
energy signature approach that is consistent with steady-state demand calculations.
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Figure 9: Comparison of calculated values and results from the energy signature model (Koch 2010)

Hourly demand profiles

So far the distribution model for the annual energy demand has described the approach for
describing daily energy demand for different building types of the residential sector.

While the physical dependencies for the mean daily demand can be described in a
gualitative manner as discussed above, the distribution over the hours of a day requires
further characteristics in the demand description.

As already described by Hellwig (2003), the sampling at an hourly level tends to even out
load peaks that exist particularly at a sub-hourly demand period (description of the load
profile). Nevertheless, distinctive characteristics can be described with regard to the daily

demand profile.
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Figure 10: Composition of the thermal energy demand through the DHW demand and space heating
requirements
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Figure 10 shows a typical residential hourly profile at the aggregation scale used in the
MACRO DE project. The profile shows a night time set back effect for the space heating
demand. Morning and evening thermal usage is especially visible in the DHW profile. A
similar approach is described by Jenkins, N., T. Sulka, et al. (2008) based on steady state
calculations per time step using an overall loss coefficient for a building.

A common driver for morning and evening peaks are the necessity to heat up the space - in
the morning after a period of night-time setback and in the evening as the outside
temperatures drops. The heat demand for domestic hot water has a major impact especially
in the peak loads as shown in Figure 10,.

Occupancy effects seem most directly visible in the DHW thermal demand, though are likely
mediated by DHW system effects — e.g. whether heat transfer is instantaneous, buffered or
scheduled. Space heating demand seems less consistently sensitive to occupancy. As internal
heat gains from occupants are usually relatively low, this type of demand is determined, as
described above, by building heating loss and system control settings.

Discussion of Drivers of Thermal Demand

As shown above, the distribution of energy demand over the year is strongly dependent on
the mean outdoor temperature and the energy signature as described above can be
explained using equations from ISO 13790 as a starting point. This point is reinforced by
ASHRAE (ASHRAE, 2005):

“Extensive studies (Fels 1986; Katipamula et al. 1994; Kissock et al. 1993; Reddy et al.
1997) have clearly indicated that the outdoor dry-bulb temperature is the most
important regressor variable, especially at monthly time scales but also at daily time
scales.”

As the energy signature models generate characteristic temperature dependent distribution
patterns that are supported by the general laws of physics, the general methodology is
considered applicable to heating based climates (e.g. Germany and the UK). The generalised
approach of energy signature models, as described by Geiger (2002) and Hellwig (2003),
when applied to a particular application is dependent on a set of variables which is modified
for different building types and age classes.

The differentiation between detached and multi-dwelling houses is explained by the varying
relation between the volume and the external surface. The volume is included in the
standard calculation of ventilation losses; the external surface determines the area to which
heat transfer coefficients are applied. These two factors are, as explained above, the driving
ones for the heat losses in addition to the temperature difference between indoor and
outdoor temperature.

Finally, age classes defined as the share of old and new buildings will determine the
steepness of the energy signature. BGW (2005) describes this share as a linear interpolation
between the two individual curves proposed by Geiger (2002).

The generalised approach with its main dependence on outside temperature leads us to
conclude that the shape of the energy signature function is similar for generic building
classes such as new and old, detached and multi-dwelling houses between the UK and
Germany. While the difference in building types is expressed in the different national
benchmarks the distribution based on physical behaviour is expected to be similar.
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In addition to the mean outdoor temperature, in the latest developments of the energy
signature approach sometimes wind speed is included as a secondary influence on the
energy demand. While BGW (2005) in their application included the opportunity to use wind
speed as a modification to the initial model parameters it seems impossible to link the model
to reliable data on windspeed in various land use settings (e.g. different urban/rural
morphologies) especially as dedicated measurements of wind speed data are often located
at airports or in open settings.

Hourly demand drivers

Whilst the hourly thermal profiles also depend on the mean outdoor temperature, on the
orientation of transparent building parts and on the thermal performance of the building
fabric, the main dependence (in both the UK and in Germany) is on heating control settings,
such as night-time setback, and on DHW usage aspects (Woods, Riley et al., 2005) that are
common to both countries. In practice, both countries contain a mix of basic (rotary on/off)
and modern heating (with temperature set back and daily programme) control systems.

Throughout the process described above, the residential sector’'s demand was used as a
basis for discussing the various influencing factors. Here it can be said that different
influences can be observed at different scales. This holds true for both the temporal scale as
well as for the scale of the number of households aggregated into one load curve.’

Comfort needs
Indoor temperature )
Part heating
. Manual ventilation
. Air exchange rate )
Building System operation
Lifestyle
Internal / solar gains Applications
Shadowing
Conversion Characteristic curve
Night time set back
User .
Operation
Heating system Distribution
g%y Hydraulic adjustment
. Operation
Ventilation
Volume
Temperature level
) Temperature )
Domestic hot water User profile
(DHW) Comfort need
DHW usage .
Equipment

Figure 11: Parameters influencing the thermal energy demand related to user behaviour (after Richter
2002)

The influence of user behaviour on thermal demand can be subdivided into 1) effects via the
building including the air exchange rate and the indoor temperature, 2) the operation of the
heating system that plays a role when determining the total heat demand and finally 3) the
domestic hot water (DHW) usage (Figure 11).
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Regarding the impact of individual factors, and especially the building related factors, the EN
15603 standard describes numerous variables ranked according to their relevance and the
distribution of the influence — as listed in Table 2 below.

Variable Standard deviation Distribution
Calculated Tailored

energy rating rating
Airflow rate from infiltration 0% 50% log normal
Airflow rate from ventilation system 0% 10% log normal
Area 2% 2% log normal
Thermal transmittance (U-value) 10% 10% log normal
System efficiency 5% 5% log normal for x and 1-x
Internal temperature 0 1 K normal distribution
Utilisation time 0% 25% log normal
Volume 3% 3% log normal
Depth, height 1% 1% log normal
Electricity use (recovered as internal heat gains) 0% 10% log normal
Frame factor (fraction of frame area in a window) 5% 5% log normal for x and 1-x
Length 1% 1% log normal
Linear thermal transmittance (@) 10% 10% log normal
Number of occupants 0% 10% log normal
Shaded fraction, shading factor 5% 5% log normal for x and 1-x
Thickness 5% 5% log normal
Absorption coefficient 5% 5% log normal for x and 1-x
Emissivity 5% 5% log normal for x and 1-x
Heating power increase per degree external
temperature decrease 20% 20% log normal
Orientation (of collecting area for solar radiation) 5° 5° normal distribution
Perimeter 2% 2% log normal
Slope (of collecting area for solar radiation) 5° 5° normal distribution
Thermal capacity 25% 25% log normal

Table 2. EN 15603 standard ranked description of factors influencing thermal energy demand

The most influential factors are the air flow rate from infiltration and ventilation, the area,
the thermal transmittance, the system efficiency and the internal temperature. This
description is consistent with the general calculation approach described above. Apart from
the indoor temperature which is assumed to follow a normal distribution in its variation the
values are distributed over large number of cases via a logarithmic normal distribution (see
Figure 12). This argues in favour of using a benchmark to represent the energy demand of
building types and types of uses.
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Figure 12: Sum of influencing factors and related specific energy demand for residential buildings as a log
normal distribution (source: EN 15603)

Measurement campaigns such as the validation phase of the Passivhaus Projektierungspaket
(Passive House Institute 2002) were used to estimate the minimal size of sample required to
obtain a log normal distribution.
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Figure 13. Distribution of specific energy demand across low energy buildings.

Example demand measurements from a German project conducted by EIFER showed that
the tendency can already be seen using 51 buildings of similar types in the existing building
stock. In addition the demand estimation is applied only to the scale of MLSOAs and
therefore not to units smaller than 5000 inhabitants.
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Figure 14: Distribution of specific energy demand of 51 multi dwelling buildings

The general argumentation used to illustrate distributional effects, illustrated in Figure 12,
does not fully cover influences emerging from the general composition of households and
the household income. While these social classifications are assumed to play a role in the
individual household’s energy use pattern their assessment would require exhaustive
collection of additional data. To date the resulting influence seems not answered in a
homogeneous manner in the scientific community. Often counterbalancing facts are
described such as a lesser performance of buildings of lower income households in
combination with a higher need to save energy and thus reduce costs (see Schlomann,
Gruber, et al. 2004). Santamouris, Kapsis, et al. (2007) arrive at similar findings, yet it must
be noted that assessments of the impact of user behaviour in their explanatory power
remain tightly linked to their national or regional context and the time of the assessment.
Next to general possibly cultural expressions of energy use also daily routines as working
hours can be expected to play a role in the energy use pattern. Here, however, the
occupancy is not expected to be represented in individual load curves as strongly as it is the
case for electricity profiles because heating system control strategies can be scheduled
independently or as a function of the indoor temperature.

As a conclusion, the inclusion of hourly drivers in the current application remains limited to a
black box type model. Therefore the modifications remain limited to the measurement of
new specific profiles. Further work on specifying the impact of individual characteristics
therefore seems most promising in the differentiation of domestic hot water (DHW) use
even though this would require a separation of the DHW load and the load component for
space heating (see Figure 10). In addition the separation could also be reflected in the
sigmoid function as DHW use is represented as a constant use over the year.

3.5. Industrial Excess Heat
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A three-step approach is used to calculate the industrial waste heat (or industrial excess heat
that more accurately describes the available waste heat but that will be used
synonymously).

1. Indicator data = employees per company. At first, all industrial companies of a certain area
(e.g. MLSOA) are considered as potential heat suppliers. Their numbers of employees, the
corresponding SIC-codes and the location or GPS-coordinates are taken from a commercial
or statistical data base, in this case either Marketsafe or Geoplan. These will be called
indicator data hence.

This list of companies will be reduced to only relevant industry sectors or processes for
industrial excess heat. These are, for example, the heavy industries, some chemical
processes, or paper industries. The selection will be made using the SIC codes.

Table 3 shows some sample rows from the Geoplan data to give an idea of what the data
looks like. The Marketsafe data provide similar information.

Name of company SIC Location Numbers of
employees

Goldsmiths 52489 430232, 455282 1500

Cargo Logistics (UK) Limited 63400 419500, 462800 6

Knaresborough Pool 92620 435316, 456682 40

North Riding Finance Limited 65239 431400, 453500 7

Bright Interiors Limited 52420 433900, 475500 12

Table 3: Data example from Geoplan

2. Benchmark data = energy demand per company. Secondly, the numbers of employees per
company are multiplied with an energy demand benchmark for French industries, which
comes from EDF. These benchmarks are given per NAF-code? and show the energy demands
per employee per year (e.g. [kWh/employee/year]). After the conversion of the NAF-codes
to the SIC-code, the multiplication with the indicator data leads to the total energy demand
of a single company per year.

The resulting list will be cut off at a certain amount of annual energy demand which
corresponds to the minimum energy usage needed to be considered as a supplier of
industrial excess heat. The exact limit is yet to be determined - it will depend on the process
temperature and therefore on the SIC-codes, as well as the reliability and the availability.

An example of the conversion from NAF to SIC code is shown in Table 4 with additional
information of the ISIC-, NACE- and SIC-codes and a short description.

ISIC NACE NAF SIC TITLES

A A A 01 Agriculture, Hunting and Forestry

- AA AA 010 Agriculture, Hunting and Forestry

1 1 1 01000 Agriculture, Hunting and Related Service Activities
111 111 011A 01110 Growing of Cereals and other commercial crops

112 112 011C 01120 Growing of Vegetables, Horticultural Specialities

and Nursery Products
Table 4: Conversion of NAF-codes to SIC, ISIC and NACE with explanation

> NAF-codes (Nomenclature des Activités Francaises) are French industry codes that are similar to SIC. For the
calculation the NAF- will be converted into SIC-codes.
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3. Benchmark data = Excess heat per company. Finally, the resulting numbers are multiplied
with a second benchmark, which provides per SIC code the potential of excess heat.

This benchmark, provided by University of Bath, results from a detailed analysis of the
processes in place in each sector. In particular, the various process temperatures are
referenced (e.g. 1000°C for aluminium processing industry), as well as the various exhaust
heat flows (e.g. heat flow at 100°C from the smelter). Then ratios are calculated that relate
the exhaust heat flows to heat demand (e.g. exhaust heat from aluminium processing
corresponds to 15% of heat demand). This ratio, representing the ratio of usable excess heat
to heat demand, ranges between 0 and 1. Table 5 provides examples (lower and higher
bands) of excess heat ratios

Temperature of excess

Industry Sector Excess heat ratio heat [*C]
Aluminium 0.1-0.15 100

Iron and Steel: Coke 0.13-0.26 1100
ovens

Glass 0.1-0.2 550

Table 5: Excess heat ratio and temperature of the excess heat per sector and SIC-code

Excess heat for distributed energy

The multiplication of rows from table 3 with the correspondent rows from table 4 and 5 will
lead to the total amount of industrial excess heat per company. The aggregation will be
based on the geographical areas that will be found in work package 2.

X X _—

Figure 15. Multiplication process for industrial excess heat

3.6. Space cooling for the commercial sector

CIBSE TM46 energy benchmarks do not separate out cooling demand from electric demand.
CIBSE Guide F describes detailed end use benchmarks for offices, banks and agencies and
hotels that include cooling. The cooling benchmarks do depend on building ventilation or
installed air-conditioning, but this type of information is not available at present.

Cooling profiles are available for offices, retail and hotel buildings. We do not have separate
DECC consumption data for cooling to validate cooling demand calculations.

Given the patchy nature of this data, it would require a distinct effort to calculate reliable
cooling demand.

3.7. Industrial electricity
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CIBSE TM46 benchmarks do not describe industrial energy demands. CIBSE Guide F describes
building energy use for space heating and other (maybe electric) uses, as well as process
energy in kWh/m? per year. As described above, EDF also has a database of energy
benchmarks for industrial sectors in France in kWh/employee per year.

The registered company datasets are able to identify specific industries and provide
indicator data on them. This forms part of the approach that would be used to estimate

waste heat.

We currently do not have any temporal profiles for Industrial electricity demand. To
calculate industrial electric demand would require finding reliable benchmarks (and profiles)

with electricity demand broken out.

3.8. Working Assumptions

The project explored and categorised the assumptions inherent in the demand estimation

method. They are tabulated below.

Category 0 - General Assumptions

4 demand components are of

1 interest: (residential, tertiary) x General
(thermal, electric)
2 canswap UK-GB General

industrial demand not of interest
3 . General
for demand side

4 ignore climate change General
& & Thermal
Demand analysed is the Gross

5 . Purpose
potential

6 ensemble profiles aren't peaky Scale
Peak iction h . .

7 eak prediction has worst Statistics

uncertainty

Category 1 — Energy Related Assumptions

These sectors contribute 38 per cent of final UK
energy consumption (DUKES 2008)

not treating Northern Ireland initially; NI
consumption <3% of UK domestic energy (BRE)

Industrial sites are not potential DH customers

Can apply weather compensation to benchmarks
and re-calculate profiles; very little impact on
demand zone creation

technical, economic and availability filters and
factors can be applied subsequently

diversity of consumers & demand level the
profiles

Because there are few days with this temperature
extreme

80% boiler efficiency for

8 converting gas consumption Thermal
to thermal production
9 gas-thermal ratios Thermal
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UK services ratio: 0.84 (DECC Service
sector update); UK domestic ratio: 0.85
(BRE Domestic energy fact file)



10

11
12

13

14

15

Parametric-statistical thermal
model works for GB

DHW consumption is fairly
constant on daily basis

normal distbn of set points

log normal distbn of
ventilation

Large part of thermal
residential demand depends
mainly on temperature

Electric demand includes
Economy 7 usage

Thermal Model

Thermal Model
Thermal Model

Thermal Model

Thermal Model

Electrical

Category 3 — Assumptions for Validation

16

17

18

CHP Ops is a good
residential validation site

DECC energy consumption
per MLSOAs

DH Losses not included

Validation

Validation

Validation

Category 4 — Demand Type Related Assumptions

19

20

21

22

23

MLSOAs residential demand
shows large diversity

EDFE residential thermal
benchmark

Residential housing stock in
2001 is considered as
indicator data for residential
thermal demand

employee to surface
conversions

tertiary demand depends on
business activity

Residential

Residential
Thermal

Residential
Thermal

Tertiary

Tertiary

28

the model includes key dependencies on
temperature and building class; hourly
statistics capture common drivers such as
DHW and night-time setback; the approach
has already been extrapolated to Austria -
see discussion on thermal modelling

actually DHW is not explicitly modelled in
our approach.

State of the art BDEW method, also
validated

this is a significant component and source
of hourly electric levelling until/unless it is
superseded by other thermal supply

it has lots of old and newly built residential
flats- that is of interest — see further
validations

DECC guidance note: domestic consumption
allocation is > 97.5% in majority of LAs

This is a supply-side parameter; we are
calculating end user demand

MLSOA has pop. Of typically 5000

UK weather corrected following CIBSE
guideline for all UK regions; EDF validated
customer tool

Latest available housing stock data set at
MLSOA level — can include annual 1%
increase (BRE)

see #24

this is probably valid for electric; for thermal
demand building type will also have an
influence



for the tertiary sector, personnel is the main

Tertiary sector ener ) )
Y &Y business resource and there are typical

24 demand can be predicted by # Tertiary . . . .
employees working space requirements; exceptions
could be schools, hotels, hospitals
tertiary similar across DE,FR . this is a reasonable initial assumption
25 Tertiary .
GB because of the complexity of the sector
Missing employee records for sites with same industry code will have

tertiary sectors can be similar procedures and labour needs across
estimated from regional or large areas so are good estimators — this is a
national average indicators standard estimation approach

26 Tertiary indicator
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4. Demand Related Data Sets

4.1. Overview

Thermal Electrical Thermal Electrical
#employees
. Data Set 35 house types 2 elec contracts 900 SICs
Indicators | el MLSOA MLSOA Post Code
Source EDF Energy DECC Creditsafe
Data Set  >40 house types annual demand 29
Benchmarks Level Region _estlmated Region
directly from
Data Set 4 house types x 7 2 elec contracts 11x7temp 8
temp ranges ranges
Profiles Level Ragi Raa ReE Count
(hourly) eve egion egion egion ountry
BDEW + UK BDEW + UK
source Weather data EDF Energy Weather data BDEW

4.2. Indicators

EDF Energy: House types by MLSOA

EDF Energy uses detailed datasets on consumers as part of its customer research activities.
From these datasets, detailed housing stock statistics were extracted by MLSOA to provide
indicator data for this project. The indicators are categorised according to five housing types
(detached, semi-detached, terraced, bungalow and flat) and seven age classes (before 1990,
1990 - 1920, 1921 — 1940, 1941 — 1960, 1961 — 1975, 1976 — 1990, after 1991).

DECC: Residential Electrical consumption by MLSOA

A significant differentiator of electrical consumption is the type of subscription tariff:
Economy 7 or standard (Yohannis, 2008 and Hamidi, 2009). The total consumption per
MLSOA according to these two types are available directly from DECC’s compilation of
electric consumption by MLSOA.

Creditsafe: employee number at registered UK companies sites.

Creditsafe Business solutions Limited®offers credit rating related services and data on 4.4
million UK companies from all sectors. The data is gathered from information registered at
Companies House, The Registry Trust and the London & Edinburgh Gazette. Data on the
number of employees working at each company site is used as an indicator of tertiary energy
demand. This data set also contains information on the business activity of the registered

® For more information on Marketsafe data, please refer to the report “Comparison of Geoplan and Marketsafe
data” prepared for the ETI.
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company site using a UK SIC (Standard Industry Code) code. Approximately 900 5-digit SIC
codes are mapped into 29 CIBSE TM46 energy demand benchmark classes.

Tertiary employee indicator conversion to floor area

EDF routinely performs market studies to understand its client base. Data to establish
employee to built floor area ratios was derived from two separate studies on the UK tertiary
sector. These used employment statistics from e.g. Eurostat and the Office of National
Statistics and data on floor area from consultancies such as BASIC and BIPE. The table below
summarises the ratios obtained.

conversion factor
Sector 2
(m“/employee)
Tertiary 27
Offices 20-26
Retail 21-23
Hotel +
Restaurant 24-31
Public Buildings 24
Education 22

Table 3. Tertiary sector built area to employee ratios

EDF Energy: Climate data

EDF Energy’s meteorology team provides weather data and scenarios for EDF Energy’s
consumption forecasts. Regional degree day data are used for weather compensation of
residential and tertiary energy demand benchmarks. Regional daily average temperatures
are used directly in constructing profiles for residential and tertiary thermal demand.

4.3. Benchmarks

EDF Energy benchmarks from EDFE customer energy savings tool

The residential benchmarks for both thermal and electricity demand have been extracted
from a survey carried out (about 9000 households surveyed in the London, South and West
of England where EDF’s customer base is located) by EDF using a proprietary tool that can
predict customer savings from energy efficiency measures. It includes detailed information
on the housing types, number of bedrooms, construction ages, electricity and gas
consumption, etc. The gas consumption is then aggregated for five housing types and seven
age classes. Considering an average gas boiler efficiency of 80%, a total of 35 thermal
benchmarks are derived. These benchmarks should differ according to the geographic
location; therefore, weather adjustments to the benchmarks have been applied based on
the CIBSE TM46 guidelines (CIBSE 2008).

CIBSE TM46 energy demand benchmarks (2008)
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Electricity and thermal benchmarks for 29 sectors are collected from CIBSE TM46. These
benchmarks are the key to calculating the tertiary annual energy demand.

4.4. Profiles

As previously described, annual demand is distributed over days and hours using normalised
profiles. Besides the description below, detail on profile sets is given in Appendix 3.

One of the challenges in the project, and a main focus of the extension of work on the
development of the demand estimation methodology, was the gathering of detailed and
representative profile sets. For example, UK gas transporters are obliged to perform daily
load estimation predictions (for non-metered customers) but do not currently perform this
calculation at hourly level (xoserve, 2009). As a result, reliable UK hourly thermal profiles are
relatively difficult to obtain.

BDEW gas profiles

Because of the lack of a utility-grade hourly gas load model in the UK, we turned to a
German gas grid forecasting method used by the BDEW that does provide a detailed hourly
gas consumption profile. This method is largely determined by building physics and typical
thermal systems and occupant behaviour - and its main dependence is on climate data — as
described above in Section 3.4. By substituting UK climate data, we can describe the many of
the detailed features of UK gas demand — as explored in the validation described in Section
5.2. Further details on the BDEW method for gas profiles for the residential and tertiary
sectors are described in Appendix 3 —the modelling approach is described in Section 3.4.

EDF Energy Forecasting Residential Electric Profiles

EDF Energy produces detailed forecasts of non daily metered electric consumption for its (6
million) residential customers. EDF Energy forecasts distinguish between 2 distinct types of
consumption patterns: due to standard and Economy 7 subscriptions and use a profile for
each. The estimated load curve in each area then depends on the proportion of each type of
consumption.

EDF Sustainable Solutions Profiles

The project started with a set of profiles from EDF Energy’s Sustainable Solutions group.
These were developed by EDF for bidding for and designing CHP systems. They were not
considered sufficiently detailed and validated to rely on for residential demand but do
provide partial coverage of UK tertiary demand.

Four hourly profile data sets are available for the hotel, retail, schools and offices tertiary
sectors for both thermal and electricity demand. This data set is normalised and aggregated
to derive daily (typical weekday and weekend), monthly and seasonal profiles.

BDEW tertiary electric profiles

The BDEW also provides sets of electric profiles according to sector (8 tertiary and 3
agricultural) for non daily metered tertiary consumers. These can be used to complement
the tertiary profile data sets from EDF Sustainable Solutions where the difference between
patterns of commercial electric consumption in the UK and Germany are not expected to be
very different.
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5. Validating Demand Calculations

5.1. Annual Demand Calculation for Harrogate

The methodology has been tested on Harrogate 015 MLSOA, which is one of the 21 MLSOAs
in Harrogate within the region of Yorkshire and Humber in the North of England (Figure 16).
According to the Census data in 2001, it has a population of 8252, with 3952 households in
an area of approximately 214 hectares (DECC, 2007).
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Figure 16. Description of the trial area (top right figure shows the location of Harrogate in regard to
England, whereas the main figure illustrates its MLSOAs and the highlighted blue area is Harrogate 015)

A wide range of data sets are needed to carry out the trial methodology. These include
indicators, benchmarks as well as profile data sets for the residential and tertiary sectors.
These are described in greater detail in Section 4.

The calculated total annual thermal and electricity energy demand in Harrogate 015 is about
107 GWh and 59 GWh respectively. Figure 17 shows the share of this energy demand by
sector.

33



Thermal and electricity energy demand in Harrogate 015
120,000,000
100,000,000 -
< 80,000,000 |
=3
e)
= m Tertiary
£ 60,000,000 -
g @ Residential
>
o
2 40,000,000 -
L
20,000,000
0
Thermal Electricity

Figure 17. Calculated annual thermal and electrical demand in Harrogate MLSOA 015

For the statistical analysis of the results, the residential thermal demand calculation was
performed on all 21 Harrogate MLSOAs. The resulting error distribution is given in Section
6.4 and the spatial distribution of the energy demand is shown in Figure 18.

Results of tertiary indicator restoration

The restoration of employee indicator data, described in Appendix 2, was checked by
applying the method to a number of Harrogate MLSOAs. The MLSOAs were selected to
consist of tertiary sites rather than industrial so that the predicted demand could be
compared with DECC data for MLSOA energy consumption. The selection criteria were: a
large number of commercial sites, in a densely populated area with a relatively low
commercial energy consumption per site. Five MLSOAs satisfied these criteria and the
restoration results for these are presented below in Table 4.

MLSOA % missing indicator % missing after
data restoration

HG 015 59% 16%

HG 009 47% 5%

HG 010 47% 3%

HG 014 48% 5%

HG 019 77% 15%

Table 4. Results of restoring tertiary employee idicator data
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Figure 18. Total thermal and electricity energy demand in Harrogate

5.2. Calculations for “CHP Ops” Cogeneration and District Heating Site
For the validations of the proposed method, almost two years of data were available from a
district heating system with a CHP unit, referred to as “CHP Ops”. The site will not be
identified to protect customer data. The district heating system consists of 12 residential
multi-dwelling buildings with about 500 apartments in total. These buildings were
constructed between the 1960s and 2005, but exterior insulation has been added to the 60s’
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and 70s’ buildings. Most of the apartments are considered to be social housing. The
residential sector data has been aggregated to provide anonymity.

The tertiary sector consists of a primary school, a nursery and a leisure pool with a fitness
centre. These customers have been measured individually and this data has been available
for the validation. Calculations will only be shown for the whole tertiary sector to protect
customer privacy.

The size of the district heating system is less than one tenth of the size of an MLSOA (see
Figure 19). The total energy consumption of the district heating network is about the same
ratio compared to the consumption of an MLSOA. Thus, in comparison to a Macro DE Zone
the demand of this network is between 1/50 and 1/100 of the zonal demand.

Figure 19: Size of the area of the distric heating network of CHP Ops (white square)
compared to individual MLSOAs (black lines) or a Macro DE Zone (green area)

The measured data was taken in two intervals, the first one ranging from February, 2" of
2008 to January, 27" of 2009, while the second part was measured between July, 5™ of 2009
and July, 6™ of 2010. The data consisted of measurements taken every ten minutes for the
whole district heating system, the residential buildings in total and for each tertiary building.

Thus, calculations could be done for the validation of the annual, daily and hourly demand.
The annual demand for the period of 2008/09 was predicted to be 6.7 GWh, while the real,
loss corrected values showed a demand of 5.4 GWh. This is an overestimation of 26 %. The
results for the residential demand was much closer with an overestimation of only 17 %, but
the tertiary sector has been predicted to be more than 50 % higher than the real
measurements. The data can be seen in Table 5.

Measured loss-

Predicted
: corrected

RES L E] 4.7 GWh 4.1 GWh +17 %
Tertiary 2.0 GWh 1.3 GWh +54 %
Total estimated 6.7 GWh 5.4 GWh +26 %

Table 5: Prediction and measured (loss-corrected) data for CHP Operations for the period of 2008/2009
with error of prediction

The daily demand calculations were renormalised on the measured annual demand data in
order to isolate the daily level prediction error. In the prediction method the annual demand
is distributed over the year according to the outside daily mean temperature, which has
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been measured at the CHP Ops site. Different parameters are used for each type of
buildings.

Shown here are the figures for the whole district heating network: The energy signature, the
annual duration curve and annual load curve.
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Figure 20: Energy Signature of the aggregated total measurements (blue)
and the total predicted (red) for different daily mean temperatures

The energy signature is used to show the correlation of the outside temperature and the
consumed heating demand. The heat consumption is showing the s-shaped curve which is
used in the prediction method. The scattering occurs due to the insulation effects of the
buildings, thus the daily consumption does not only depend on today’s temperature, but
also on the temperatures of the days before.

The prediction follows the measured data very closely as can be seen in Figure 20, although
the scatter is larger in the measured data.

The annual duration curve is usually used to estimate the size of heating units. It show the
daily demand sorted in descending order. Figure 21 shows the annual duration curve for the
measured data of the district heating system (blue curve) and the method’s prediction (red
curve). These lines follow each other with a small overestimation at the peak days and an
underestimation in the intermediate days (between day 100 and day 200).
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Figure 21: Annual duration curve fort he measured (blue) and predicted (red) load curves

The next step in the analysis can be seen in Figure 22 . It shows the same values as in Figure
20 and Figure 21, but this time in chronological order. The graph also shows the temperature
curve of the period of 2008 and 2009 (in grey) measured at the site. The dependency of both
load curves on the temperature can be seen directly. The method shows a good prediction in
general, but there are prediction discrepancies when the temperature changes rapidly.

Breaking down the data into hourly level for the same period of time, the graph is getting
confusing. The points are so close by each other that a distinction of the curves and a
conclusion about the accuracy of the prediction can hardly been done (upper part of
Figure 23). The two graphs at the lower end of

Figure 23 are showing two extracted weeks from the hourly load curve. The first one is one
week of July. Here the prediction is quite close to the measured data during the workings
days. There is a slip of the peak time in the hour for weekend. For a winter week (lower right
part of

Figure 23) the result changes. It can be seen that the consumption during the night is lower
than anticipated. Therefore there is an overestimation of the morning peak, while the
evening peak is underestimated. This effect is once more most significant during the
weekend.
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Figure 22: Annual load curve for the measured (blue) and predicted (red) data.
The mean daily temperature (green) is shown as well
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Figure 24: Comparison of measured data (blue) and the prediction (red) for days within an intervall five
degree, starting at 0°C

The differences on the prediction of the morning peak and the evening peak can be analysed
more clearly in the four parts of Figure 24. For these graphs the days within a five degree
interval have been normalised and put on top of each other, showing the bands of blue lines.
Errors in the measurement data have not been deleted. The same days’ predictions have
been put into the graphs as the red-coloured bands. The number of days within one five
degree interval is represented in each graphs upper right corner.

During the warmer days (10 — 15 °C and 15 — 20 °C, two lower graphs of Figure 24) an
underestimate during night time and an overestimate during the morning hours can be seen.
On the other hand, the colder days (0- 5 °C and 5 — 10 °C, two upper graphs of Figure 24),
show that the morning peak is at the same height of the hourly demand distribution over
the day, but not at the same time. The modelled morning peak is about one hour early.

On balance, the model predicts many of the temporal features and the pattern of the district
heating network load well. It is arguable whether, for example, a 1 hour shift in the precise
morning load would have a significant impact on a heat supply system with thermal storage.
The overall result is a promising sign that the method can be used for other parts of the UK.
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6. Statistical Analysis

6.1. Introduction and Approach

The statistical analysis part of the Trial aims to assess the levels of uncertainty in the
development of domestic and non-domestic temporal energy demand. It exercises the
energy demand calculation on a number of MLSOAs and on a district heating site to gauge
the effectiveness of the data and method that will be used to compute energy demand
across the UK.

Two analysis approaches have been developed. A first, “bottom-up” approach, considers the
variation and errors inherent in the indicator and benchmark variables that contribute to the
energy demand calculations. Error propagation techniques are then used to estimate the
resulting energy demand uncertainty.

A second, “top-down”, analysis compares the computed energy demands for Harrogate
MLSOAs, residential and tertiary, thermal and electric, with MLSOA electric and gas
consumption values from the UK Dept. of Energy and Climate Change (DECC, 2007). The
distribution of discrepancies between these 2 figures gives another perspective on the
computed energy demand uncertainty.

The statistical analysis of profile prediction errors looks at the differences between predicted
and measured loads over a whole year of data at the “CHP Ops” district heating site. The
prediction errors are decomposed into their annual, daily and hourly components.

6.2. Assumptions

The statistical analysis relies heavily on the Central Limit Theorem (CLT) of probability —
according to which the mean of a sufficiently large number of independent random
variables® will approximate a Normal distribution. The CLT approximation is very likely to
hold for aggregated energy demand at the MLSOA level because of the large number of
independent energy contributions. To a significant extent, the CLT can also be invoked at
the level of the individual variables that make up the demand calculations, where these
guantities result from many underlying random components and especially in the absence of
strong evidence for another distribution.

The importance of this approximation is that it enables the use of analytic expressions for
e.g. error propagation.

There may, however, be exceptions to the Gaussian distribution approximation. Some
groups of demand contributions contain distinct classes of sub-components. Examples could
include residential building groups (e.g. semi-detached 1901-1920) in which distinct distinct
building performance classes will exist, e.g. unrefurbished and refurbished — this could give
rise to a multi-modal distribution instead. As another example, the tertiary sector energy

* The Central Limit Theorem conditions for the underlying random variables include: independence as well as
finite mean and variance. The requirement for identical distributions can be relaxed according to Lyapunov’s
condition.
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benchmarks have been divided into usefully distinct classes but employee/floor area
conversion ratios are only available at larger grouping levels and these ratios could have
multi-modal error distributions.

There are also some variables that exhibit correlation. Thermal demand and electrical
demand, for instance, could both be related to energy efficiency measures or operating
hours.

6.3. “Bottom-Up Analysis” of Likely Errors

All reported errors are assumed to be random variables unless described as systematic.
Tertiary Sector:

Employees

The accuracy of employee data from the MarketSafe registered companies database is
inconsistent. Where available, it is given to the nearest employee — though some of the
values for the larger companies may be the results of talking a mid value in a range
[MarketSafe]. Given that the average number of employees per company in Harrogate 015 is
5 to the nearest employee, we estimate an accuracy of 1in 5 i.e. an average error of +-10%.
In very many of the limited company records, however, the employee value is missing (92%
of Ltd. company have missing employee data for Harrogate 015 MLSOA compared to only
4% missing for non Ltd. companies). For Harrogate 015 MLSOA, this gave a likely employee
number under-estimate of approx 60% compared to the smaller random variations. The
missing employee statistics are described in a separate report on the registered company
databases (Murshed, 2010). After applying the restoration method described in Appendix 1,
the systematic underestimate of employees can be reduced to about 10% (see Table 4 ).
Likely error in data:

+- 10% relative std. dev.

approx 60% systematic employee underestimate across Harrogate 015 (according to
Marketsafe approx 40% across UK). After restoration this underestimate is reduced to
approx. 10%.
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Figure 25. Analysis of Energy Classification of Companies with missing employee data for Harrogate

Energy Classification

The mapping and classification of SIC codes into CIBSE TM46 energy benchmark classes is
highly non-linear and it is difficult to quantify the uncertainty inherent in the process.
Therefore the current error estimates are based on expert analysis from working with the
mapping process. This mapping is also one of the areas where the method is subject to
ongoing refinement. On the one hand, there are approximately 900 SIC codes to map into
just 29 distinct energy benchmarks so the mapping could be performed with good
resolution. On the other hand, SIC codes classify company activity rather than building type.
For example, a chemical industry company in Harrogate could have a variety of buildings,
including administrative, warehousing as well chemical factories. This effect will tend to
underestimate the contribution of generic building types such as offices and storage.
Likely error in data (from expert analysis):

+- 20% relative std. dev. from misclassification errors

5 - 10% systematic underestimate of generic building types.

Conversion from employees to area

The area per employee conversion factors rely on tertiary sector intelligence for employee
numbers and building surface area. EDF has conducted studies of this kind but much of the
available data is at large sector levels such as “hotels and restaurants”. Other tertiary sector
groups are missing and have to be estimated from the total tertiary statistics. As a result,
conversion values become representative when sufficiently aggregated but could be in error
for individual sub sectors. Without the necessary detailed tertiary sector intelligence it is
difficult to estimate the size of the likely sub-sector error. The quantity provided, therefore,
is based on expert analysis.

Likely error in data (from expert analysis):

+- 75% relative std. dev.
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Energy Demand Benchmarks
Benchmark building consumption data is available from reliable sources such as CIBSE
(CIBSE, 2008). It is harder, however, to obtain data on the natural variability of building
consumption. The EL-Tertiary report has measured the electric consumption of samples of
tertiary buildings in order to gauge the potential for energy conservation. The BRE’s Non-
Domestic Building Energy Fact File (BRE, 1998) provides example measured distributions of
total energy for offices and shops respectively. The variances estimated using these data

sources are provided in Table 6 below.

Thermal Demand

Electric Demand

Energy Classification relative comment relative comment
Std.Dev. (%) Std.Dev. (%)
) BRE study from EL-Tertiary EU 51 sample quartiles, skewed
0, 0,
general office 36% 64 offices 88% diston: 84 +72 -29
high street agency 45% gfé"gii,ed from mean 60% estimated from mean std. dev.
. BRE study from EL-Tertiary EU 10 sample quartiles, much
0, 0,
general retail 54% 63 shops 56% higher skewed distbn: 503 +140 -239
large non-food shop 45% ;sélrgae:sd from mean 60% estimated from mean std. dev.
small food shop 45% gtsé"zised from mean 60% estimated from mean std. dev.
large food shop 45% ;sélrgae:sd from mean 60% estimated from mean std. dev.
restaurant 45% ;sélrgae:sd from mean 60% estimated from mean std. dev.
bar, pub .. 45% ;sélrgae:sd from mean 60% estimated from mean std. dev.
o estimated from mean o from EL-Tertiary EU 10 sample quartiles, lower
hotel 45% std. dev. 49% skewed distbn: 70 +38 -9
cultural 45% ;S(}'";i:fd from mean 60% estimated from mean std. dev.
entertainment halls 45% gi}'"&iﬁfd from mean 60% estimated from mean std. dev.
swimming pools 45% gi}'"&iﬁfd from mean 60% estimated from mean std. dev.
fitness and health centre 45% ;sélrgae:sd from mean 60% estimated from mean std. dev.
dry sports and leisure facility 45% ;Sdt'rngd from mean 60% estimated from mean std. dev.
covered car park 45% ;S(}'";i:fd from  mean 60% estimated from mean std. dev.
public building light usage 45% ;Sdt'rngd from mean 60% estimated from mean std. dev.
- o estimated from mean o from EL-Tertiary EU 26 sample quartiles, slightly
schools and seasonal buildings | 45% std. dev. 71% skewed distbn: 23 +14 -8
university campus 45% :tsé"gi:fd from mean 60% estimated from mean std. dev.
clinic 45% estimated from mean 60% estimated from mean std. dev.
std. dev.
. o estimated from mean o from EL-Tertiary EU only 5 sample quartiles, lower
hospital 45% std. dev. 42% slightly skewed diston: 35 +14 -6
. . o estimated from mean o from EL-Tertiary EU only 4 elderly homes sample
long term residential 45% std. dev. 51% quartiles, higher slightly skewed distbn: 108 +33 -41
general accommodation 45% ;Sdt'rngd from mean 60% estimated from mean std. dev.
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emergency services 45% gz}miﬁfd from mean 60% estimated from mean std. dev.
laboratory 45% gz}miﬁfd from mean 60% estimated from mean std. dev.
public waiting 45% gtsdtirgae:;e.d from mean 60% estimated from mean std. dev.
terminal 45% gtsdtirgae:;e.d from mean 60% estimated from mean std. dev.
workshop 45% gtsdtirgae:;e.d from mean 60% estimated from mean std. dev.
storage facility 45% gtsdtirgae:;e.d from mean 60% estimated from mean std. dev.
cold storage 45% ;Sdtirngfd from mean 60% estimated from mean std. dev.

Table 6. The Estimated Likely Error in Tertiary Sector Demand Benchmarks.

Residential Sector

Number of houses

The housing number data comes from an EDF database of number of buildings by type and
age and was aggregated from full postcode level up to MLSOA level. It should therefore be
accurate to within 1-2 buildings. The average number of houses per class in Harrogate 015
MLSOA is 120 so the likely error is less than 1 or 2 in 120 or +-1%

Likely error in data:

+- 1% relative std. dev.

Energy Demand Benchmarks

Residential benchmark values for thermal demand were derived from an EDF customer
energy efficiency calculation tool. The tool’s model was calibrated with data from surveys.
Consumption predictions include the effects of occupant behaviour and number of rooms
but, as detailed statistics on these parameters per MLSOA were not available to us, demand
values were estimated as the mean. The effects of occupant behaviour and number of
rooms can however be expected to contribute to the variance of results. The likely error for
each of the 35 residential building classes was estimated from the Variance calculated over
the calculated range of output values from tool’s predictions.

Likely error in data:

ranges from approximately +- 15% relative std. dev. on newer houses to approximately +-
40% on pre-1900 buildings (as shown in Table 7 below)

DETACHED SEMI-DETACHED TERRACED BUNGALOW FLAT
Age Rel Std. Dev. |Age Rel Std. Dev|Age Rel Std. Dev. |Age Rel Std. DdAge Rel Std. Dev.
before 1900 50% before 1900 41% before 190 33% before 1900 42% __|before 1900 39%
1900 - 1929 32% 1900 - 1929 25% 1900 - 192 23% 1900 - 1929 0% 1900 - 1929 32%
1930 - 1949 28% 1930 - 1949 22% 1930 - 194 23% 1930 - 1949 23% 1930 - 1949 26%
1950 - 1966 22% 1950 - 1966 20% 1950 - 196 23% 1950 - 1966 24% 11950 - 1966 18%
1967 - 1975 20% 1967 - 1975 21% 1967 - 197 24% 1967 - 1975 20% |1967 - 1975 35%
1976 - 1990 17% 1976 - 1990 14% 1976 - 199 20% 1976 - 1990 13% ]1976 - 1990 27%
1991 - 21% 1991 - 16% 1991 - 22% 1991 - 0% 1991 - 32%

Table 7. Calculated relative standard deviations across the 35 residential building classes.

DECC MLSOA Electricity Consumption Data

The electricity consumption data per MLSOA from DECC is expected to be relatively reliable.
Apparently (DECC, 2009), for most districts 97.5% of consumption could be correctly
allocated to MLSOAs. Across the UK, all but 6 districts could correctly allocate 95% of electric
meters.

Likely error in data:

less than +- 5% of MLSOA electric consumption.
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Error Propagation Analysis

Error propagation techniques can be used to estimate the variation in a variable that is a
function of several other independent random variables. For the case where the underlying
random variables are Normally distributed, satisfactory analytic expressions have been
derived. The more general case is often approached via Monte Carlo simulation.

The general energy demand calculation equation for the demand methodology can be
characterised as

Demand, D =} jsectors 2 jsites (Iji x Bj) (2)

where the indicators I can vary per site (e.g. number of site employees) but the same
benchmarks B; are used within each sector i. These are treated as random variables with
standard deviation ojjand og; , respectively.

Using standard error propagation techniques (Gertsbakh,2003), it can be shown that the
resulting variance in the demand is given by:

c)-2D = Z i sectors {(OZBI stites I2ji) + (Bzi stites 0-2|ji )} . (3)
For the residential sector, where |;= 1 and 0% = 0, the simplified expression becomes
0-2D =Y isectors (Ji 02Bi) , (4)

where J; is the number of houses per building class.

Error Propagation Results

Residential Thermal Energy Demand

Equation 4 was used to propagate the residential sector component variances up to the
Harrogate MLSOA 015 level. The major contribution to the variance in the residential
thermal demand came from pre-1900 residential buildings. However, because there were
over 3000 of these properties, averaging effects reduced the predicted error to +- 1%.

Tertiary Energy Demand

Equation 3 was used to propagate the tertiary sector component variances up to the
Harrogate MLSOA 015 level. The predicted random error on tertiary thermal demand was
9%. The predicted random error on tertiary electric demand was 8%. These are both
considerably lower than the uncertainty of the data making up the demand calculation
because of the averaging effect of many companies.

Note that error propagation calculations are known to often underestimate the random
error in the final result because of additional random variations or relations between the
input variables (Gertsbakh, 2003).

6.4. “Top-Down” Harrogate MLSOA statistics
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This aspect of the statistical analysis replaces the original validation step. It was realised that
it is not so useful to validate the estimation of a result subject to uncertainty with a single, or
even a few, reference values. If the results are within estimated error bounds, the
computation is “validated” but it doesn’t inform us whether the outcome was lucky or
repeatable. Much more interesting could be an outcome that doesn’t validate the
calculation method — this would suggest that the original error estimation needs adjusting.

Having developed the demand calculation method, it was decided to spend a little more
time and extend it over all 21 MLSOAs in Harrogate. This could provide a sample of demand
calculations and thus perhaps some insight into their likely error distribution”.

The DECC database provides Domestic and Industrial/Commercial consumption of Electricity
and Gas on an MLSOA basis. The DECC gas consumption data is multiplied by a typical gas
boiler efficiency of 80% to give equivalent thermal demand. Not all heating systems use gas
however, so the DECC values also need multiplying by a gas heating systems factor. EDF has
strategic studies on the proportion of fuels used across the UK that suggests a national
average value 0.86 across the UK.

Using the BRE domestic energy fact file (BRE, 2001) data on the energy balance of the UK
housing stock suggests a ratio between UK domestic gas consumption and useful thermal
demand of 0.85 (see Appendix 5). Performing the same analysis on the UK tertiary sector
using data from DECC's service sector tables on energy consumption in the UK (DECC, 2009)
gives a similar ratio of 0.84.

Unfortunately, these gas consumption to thermal demand conversion values can be
significantly different in rural regions. A more responsive indicator is the DECC data on the
ratio of gas meters to electric meters. The assumption here is that if a household has a gas
meter then it is on the gas network and it will use gas for its heating and otherwise it will
not. Having converted between consumption and demand values, the differences between
demand calculations and DECC values are plotted below as scatter graphs.

Note that the DECC consumption values combined industrial with commercial consumption
whereas our demand calculations for the tertiary sector did not include industry. As a result,
the DECC values should be higher for MLSOAs with significant heavy industry. This was not
expected to be the case for Harrogate 015 — one of the reasons for which it was originally
chosen. The scatter results shown below now include the results (pink data points) after
restoring the number of employees data on MLSOAs selected for their likelihood to have a
low industry component.

Residential thermal scatter results

*In principle, the distribution of errors in demand calculations across MLSOAs need not be the same as the
distribution of error in the calculation of a single MLSOA, though this assumption, related to ergodicity, is often
used in statistics.
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Scatter of Harrogate Residential Thermal Demand Calculations
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Error of Harrogate Tertiary Thermal Demand Calculations
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6.5. CHP Ops prediction errors

The purpose of the validation against the CHP Ops district heating site was to obtain an
indication of the accuracy of the detailed thermal profile predictions. The prediction error in
the annual demand is already described in Section 5.2. To isolate the profile related
prediction errors the measured and predicted demand curves are normalised. The thermal
demand model, described in Section 3.4, distributes the demand into daily amounts and
then further into an hourly profile. To test the model, we look at the daily demand
prediction error and then normalise the hourly profiles by the daily demand to isolate the
hourly prediction error component.

The mean value of the profile error is zero because the profiles are normalised. The statistic
used throughout to describe the error therefore was the sample standard deviation, given
below in Equation 5.

s= [1/0-1)D , (x-<x>)2] (5)
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The standard deviation was normalised to the mean hourly or daily load to give an indication
of the typical error at the hourly or daily level, respectively. The errors were calculated over
a sample of 726 days. For the profiles, this provides at least 100 daily samples per 5 degrees

temperature band. The results are summarised in Table 8 below.

CHP Ops Prediction Error

Daily 13%
Residential
Hourly 22 %
. Daily 20%
Tertiar
4 Hourly 29-58 %

Table 8. Profile prediction errors

As described in Section 3.4, on the thermal demand modelling, the hourly thermal usage
depends on a large number of factors many of which are vary randomly. The effect of these
show up in the natural variation in profiles seen in Figure 24. The size of the measured
residential profile variations are 11% - smaller than the prediction errors. For the tertiary,
they are 26% - almost as large the typical prediction errors.
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7. Discussion

7.1. Statistical Analysis

Tertiary

The tertiary sector data contains some large sources of potential error. Employee numbers
are at the source of the demand calculation and 95% of the registered Limited companies
have not reported this data. In Harrogate 015 MLSOA, 1249 out of 1994 companies are
registered as Limited (62%). This suggests a significant underestimate of tertiary sector
demand.

As described in the validation of tertiary demand calculations in Section 5.1, the restoration
of this data can mitigate this underestimate to about 10%. The remaining sources of
variations in the calculation, explained below, will dominate contributions to the resulting
demand uncertainty.

For the remaining tertiary sector demand calculations based on provided employee
numbers, there are potentially large systematic errors in the conversion of employee
numbers to floor area - up to 75% at tertiary sub-sector level. This is because the conversion
values are only available at large sector group levels. Fortunately, the conversion values
should become more representative as the degree of aggregation across tertiary sub-sector
increases.

Although the tertiary energy benchmarks come from a reliable source (CIBSE 2008),
indications are that underlying demand variations in the tertiary sector are large — about
45% for thermal and 60% for electric. Once again, the accuracy of the benchmark as an
estimate should improve with aggregation of sites.

Despite the large uncertainties in the input data described in Section 4.2, the error
propagation results for Harrogate 015 estimate that random errors could be reduced to 8%
for thermal and 9% for electrical demand. Whether this reduction is achieved in practice
across the UK depends on having large numbers and good mixes of tertiary sites. The 30%
uncertainty seen in the MLSOA scatter results suggest that the benefits of averaging are not
fully realised. This is likely due to sources of extra variation and/or lack of statistical
independence.

Residential

For thermal demand, the residential sector data starts with accurate data from EDF on the
number of residential buildings per MLSOA. The greatest source of uncertainty lies in the
demand of individual residences. We use benchmarks that are an average over different
system behaviours and occupant numbers. The resulting thermal demand uncertainties of
15% to 40% are however reduced by aggregation to show up in the MLSOA statistics as 13%
for thermal demand.
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For electric demand, DECC consumption data is used directly and is expected to be accurate
to within 5%.

The projection onto Zones and whole-UK method

The creation of Energy Zones in the continuation of work package 2 will involve a) further
aggregation and b) geographic combination of regions designed to level temporal demand.
Further aggregation will reduce the effects of random demand variation a little more and
improve the repeatability of the results, although most of the aggregation has already taken
place at the MLSOA level. Levelling of temporal demand will probably be achieved by having
a good mix of industries and residential. With any one sector less dominant in the energy
contributions, sector-average values will become more representative. At first sight then,
Energy Zone demand calculations across the UK should have slightly reduced random errors
but exhibit similar systematic errors.

7.2. Confidence in the Demand Prediction

A discussion of confidence levels in the various aspects of demand estimation is summarised
in Table 9 below.

Confidence in energy indicators is derived from the completeness and accuracy of the
indicator data. For example, the tertiary employee number indicators from Marketsafe
provide a comprehensive coverage of UK company sectors but some of the records are
missing and they must also be converted in to floor area using sector average conversion
ratios.

Confidence in the benchmarks is derived from the institution that provides the benchmarks
and their purpose. CIBSE is a respected institution and its TM46 benchmarks establish
representative average energy consumption values to compare building performance
against.

The confidence in the likely prediction error relies on the degree to which the project has
tested the annual demand results against real demand data. Because this process can be
time consuming and expensive, no testing was performed of residential electric annual
demand because this came directly from measured values supplied to DECC.

We can have a high level of confidence in the models used for the distribution of annual
demand (by profile) because these come from gas and electricity distributors who have a
commercial stake in their reliability.

The confidence associated with the profiles themselves depends on the extent to which we
are calculating the same demand. The confidence in the residential thermal profiles is good
because it captures the main features and dependencies that characterise our zonal
temporal thermal demand estimates.
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Once again, the confidence in the likely profile prediction error relies on the degree to which
the project has tested the temporal demand (or load curve) results against real load curve
data. For example, our current confidence and level of knowledge in the likely profile
prediction error for tertiary thermal demand is low because we have only been able to test
predictions against a few buildings.
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Indicator Confidence

benchmark confidence

Annual Demand
prediction error

Profile model

profile confidence

profile prediction error

] confidence confidence
confidence
. . High - detailed Hou§|ng High - detailed benchmarks Good - analysis of High - a sound . M.(ec.i{um - I|m|t§d
Residential stock (2009) according to . . Good - captures the main validition from testing
validated on EDF Energy prediction over 20 approach developed for - . -
Thermal type and age purchased from - s features and driving factors | against 500 buildings on
customers Harrogate MLSOAs gas grid load predicition .
market research company 1 site
High - a sound High - gleotrlmty seasonal hourly
Residential None - relying on approach developed for profiles developed by EDF none - relying on EDF
. High - DECC data High - DECC data L Energy for the supply of its non- S
Electric accuracy of DECC data electric grid load : Energy validation
o domestic customers. Curves
predicition ) .
reviewed on a regular basis.
. Medium - employee indicator| Good - benchmarks derived| Medium - indication of High - a sound .
Tertiary . . - . Good - developed for gas grid Low - only tested
Thermal records sometimes missing by CIBSE over a large prediction validity from 5 || approach developed for load predicition against a few buildings
though can be recovered number opf buildings MLSOA sample gas grid load predicition
. Medium - employee indicator| Good - benchmarks derived| Medium - indication of High - a sound . .
Tertiary . . L . approach developed for| Good - developed for electric | none - relying on EDF
. records sometimes missing by CIBSE over a large prediction validity from 5 L . - S
Electric electric grid load grid load predicition Energy validation

though can be recovered

number opf buildings

MLSOA sample

predicition

Table 9. Description of confidence across the data and calculations performed in the demand estimation.
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7.3. Further Validation Data Investigations

The validation approach can be further improved by applying it to some other CHP/district
heating schemes across the UK. It would improve the confidence in the method and would
add value to the project. For this purpose, an investigation on the CHP sites across the UK

has been carried out (see Appendix 4).

Some of the CHP sites are identified as potentially significant considering the diversity of
sectors being supplied by DH, location of the site, type of operator, etc. It is realised that
none of the individual site would provide all the modelling inputs, therefore, several sites
need to be investigated.

Cot:gir;:ts Modelled sector | Sector at Sites DE Sites Location
500 Flats: old (<1960) and new (2005) | EDFE CHP OPS London
3212 Homes Pimlico District Heating Undertaking (PDHU) | London
850 Residential flats Aberdeen CHP Aberdeen
160 Low energy homes Milton Keynes Energy Park London
18000 Houses Energy Demand Research Project (EDRP) Across UK
Flats (tower blocks) Sheffield District Energy Network Sheffield

Residential: Electric, Thermal

Detached house
old, Detached
house new, Flats

620 contemporary residential units

Grosvenor Waterside Project

Central London

Tertiary: Electric, Thermal

old, Flats new Residential properties Southampton’s district heating scheme Southampton
166 flats Sheffield Road Barnsley
42 dwellings Llanwddyn District Heating Scheme Llanwddyn, Wales
4600 homes Nottingham District Heating scheme Nottingham
696 houses Lerwick District Heating scheme Lerwick
95 flats split between two blocks St Pancras Housing Association (SPH) London
Nursery school EDFE CHP OPS London
EDFE CHP OPS London
Lerwick District Heating scheme
Primary school Pimlico District Heating Undertaking London
Citigen London

School/University

Llanwddyn District Heating Scheme

Llanwddyn, Wales

Finning Unknown
Nottingham District Heating scheme Nottingham
University
Southampton’s district heating scheme Southampton
Imperial College London
Finning Unknown
Hotel Hotel Lerwick District Heating scheme Lerwick
Southampton’s district heating scheme Southampton
EDFE CHP OPS London
pool Swimming pool Lerwick District Heating scheme Lerwick
o Nottingham District Heating scheme Nottingham
Swimming and diving complex Southampton’s district heating scheme Southampton
Hospital Hospital Finning Unknown
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Community centre

Lerwick District Heating scheme Lerwick
Health clinic, hospital Southampton’s district heating scheme Southampton

EDFE CHP OPS London
Community hall

Pimlico District Heating Undertaking London

Community centre

Llanwddyn District Heating Scheme

Llanwddyn, Wales

St Pancras Housing Association (SPH) London
Pimlico District Heating Undertaking London
Commercial premises
Citigen London
Commercial space
St Pancras Housing Association (SPH) London
10 commercial units, SPH head office
Sheffield District Energy Network Sheffield
Southampton’s district heating scheme Southampton
Large shopping centre, Supermarket
Nottingham District Heating scheme Nottingham
Shopping centre Citigen London
Market
Sheffield Heat and Power Ltd (SHP) Sheffield
Local shops Pimlico District Heating Undertaking London
Aberdeen CHP Aberdeen
Lerwick District Heating scheme Lerwick
Public building Public buildings Citigen London
Nottingham District Heating scheme Nottingham
Sheffield District Energy Network Sheffield
Office complex Sheffield Heat and Power Ltd (SHP) Sheffield
Large office buildings Southampton’s district heating scheme Southampton
Offices and warehouses Heathrow Airport London
Office
Nottingham District Heating scheme Nottingham
Offices Lerwick District Heating scheme Lerwick
Pimlico District Heating Undertaking London
Barclays Bank Sheffield Heat and Power Ltd (SHP) Sheffield
Others
BBC television studios Southampton’s district heating scheme Southampton

The following schemes are identified as potentially interesting for further validation:
Pimlico District Heating Undertaking (PDHU)

Table 10. Overview of Demand Components by Validation Sites

Aberdeen CHP

Nottingham District Heating Scheme
Lerwick District Heating Scheme
Southampton’s District Heating Scheme

These sites cover all the sector energy model components. So, a data request has been send
to the Pimlico and Aberdeen schemes. In the next step, the data will need to be further
investigated and understood in order to apply the method.
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8. Conclusions

The extended methodology described in this report has addressed the acceptance criteria
outlined in Appendix 1. It provides a data-rich, bottom-up, calculation of energy demand on
an MLSOA basis suitable for the UK. The calculation uses hourly models of aggregated
electric and thermal demand derived from energy utility methods for predicting loads on gas
and electric grids — the commercial stake of this approach ensures that it is fundamentally
sound. Demand predictions have been compared with DECC annual energy consumption
data for the Harrogate region and with the real measured thermal load on a UK district
heating network.

The method is successful in calculating the annual residential energy demand. The
combined EDF housing data provides an uncertainty of 13% on thermal demand calculations
and DECC electric consumption is expected to be accurate to within 5%.

The results for the tertiary sector show larger uncertainties: approximately 30% for thermal
and electric demand. The employee data restoration method developed seems to be
effective in removing the energy underestimates seen in the initial calculation method. The
company site dataset provides comprehensive data coverage of tertiary energy indicators
but with low accuracy.

The (“bottom-up”) error propagation analysis indicates a low limit on random errors in the
annual demand calculations. The figures are impressive: 1% on residential thermal demand,
8% on tertiary thermal and 9% on tertiary electric. However, the “top-down” MLSOA error
scatter compared to the DECC figures suggest that the benefits of averaging are not fully
realised. This is likely due to sources of extra variation and/or lack of statistical
independence.

The temporal demand has been calculated with a large set of residential and tertiary
profiles. The prediction of thermal load on a single district heating network (smaller than the
target MLSOA scale) reproduced the main pattern and many of the features of the real
measured thermal load. The total hourly prediction error seen on residential load was
approx. 25%. The error on the tertiary load was higher because there were few of these
buildings: over 40%. The hourly prediction errors would be expected to be lower on a larger
aggregation of demand.
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9. Recommendations

Recommendations for additions to task 2.0 “Demand Calculation Methodology”
The proposed work items P.1 to P.4 below complement the work performed in this task.

P.1 Extra Demand Validation Sites

2-3 extra sites with demand data sets will be compared with aggregate demand predictions.
The comparison does not attempt to provide a rigorous validation but rather a comparison
that exercises a sample of most demand components. The data sets will likely include sites
such as the Aberdeen DH scheme, Nottingham DH scheme, EDRP data or the Pimlico DH
scheme according to data availability and demand coverage.

Resource required: 24 — 36 FTE weeks (e.g. 6 weeks x 2 full time engineers per site + elapsed
time contingency of about 25% in this example)

P.2 Sensitivity Analysis

A sensitivity analysis exercise has been proposed to explore the dependence of project
outcomes on aspects of energy demand. WP2 will study different demand curve, clustering
and classification parameters.

Resource required: approx 12 FTE weeks (e.g. 4 weeks x 3 full time engineers). N.B. this
estimate will need revisiting when the sensitivity analysis activity is fully defined.

P.3 Map of UK Energy Demand

It is proposed to complement spreadsheet results of the UK energy demand calculation with
multiple, detailed GIS energy demand maps.

Resource required: 4 FTE weeks (e.g. 4 weeks x 1 full time GIS engineer).

P.4 Map of UK Waste Heat

It is proposed to complement spreadsheet results of the UK waste heat calculation with
multiple, detailed GIS waste heat maps.

Resource required: 4 FTE weeks (e.g. 4 weeks x 1 full time GIS engineer).

Recommendations for task 2.1 (Formation of Characteristic DE Zones)

For proceeding with task 2.1, it is recommended to provide an indicator of demand
confidence, for example residential/tertiary ratio and proportion of Ltd companies (most
subject to missing employee records). It would also be best to ensure a good mix of
contributions within tertiary and residential sectors to benefit from averaging. Some annual
demand values could also be re-calibrated with DECC data.

Recommendations for task 2.2 (Characterisation of industrial waste heat)

For proceeding with task 2.2, it is recommended to focus on the most likely and significant
waste heat sources. It may also be necessary to create energy zones without the industrial
waste heat estimate and then create an independent Energy Zone classification with waste
heat potential that can be treated differently (e.g. within a sensitivity study) in the CHP
modelling activity.
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10. Future Work

Demand Zone Creation and Clustering

The hourly demand calculation method described in this report will be implemented in a
robust database (mySQL) in order to build the UK demand from each type of indicator,
benchmark and profile in each of the UK’s 8000 MLSOAs including approx. 4 million company
records.

The resulting demand calculation by MLSOA then feeds a process of clustering adjacent
MLSOAs into Demand Zones. The demand zones are created, or designed, from MLSOAs
according to optimisation and constraint parameters. We anticipate several hundred to a
over a thousand geographic Zones to result from this process.

Classification into “Characteristic” Zones

The classification of the geographic zones serves two main purposes. The first is to identify
scales and patterns in the types of demand. The second is to reduce the energy plant design
problem in order to facilitate an optimisation approach. The classification will reduce the
geographic zone set into approx. 20 “Characteristic” Zones

Waste Heat Mapping

This task will assess, characterise and map the potential recoverable industrial waste heat
across the UK. The waste heat created by the various high temperature processes of
selected industries will be assessed and characterised. The quantity of thermal waste
recoverable (in GWh/yr) per location will be mapped.
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Appendix 1: WP2.0 Acceptance Criteria

Method for Demand estimation
- Describes 4 types of local energy demand: (residential, tertiary) x (thermal,
electrical). Each type of demand will be composed of distinct contributions such that
the demand estimation adapts to relevant local characteristics. The demand will be
characterised by:
i) total annual demand level ;
ii) the distribution of this annual demand over daily and hourly periods using
profiles.
- For the residential thermal type of demand, further research will be performed to
identify the main influencing factors and related state of art demand modelling
approaches.

Data availability & scalability.
- The sources of data for the demand estimation will be enumerated.
- The data required for the method should be available across the UK/GB.

Working assumptions
- Aclear list of working assumptions in arriving at a demand estimate will be provided.

Validation
- Annual Demand calculations for each of the 4 demand types will be performed on at
least 1 Harrogate MLSOA and validated against DECC consumption data.
- In addition, hourly thermal load curve predictions will be validated against the CHP
Ops District Heating/CHP site. The validation will be performed on:
i) Aggregated thermal load
ii) Residential thermal model components

Statistical analysis
- A calculation of the confidence or likely error on the annual demand predictions
based on Harrogate DECC energy consumption data will be given. In addition, a
statistical comparison will be performed of hourly and daily demand predictions
against measured data from the CHP Ops site.

Scalability of validations against DE sites
- Ananalysis of potential sites for further validation of demand estimations will be
produced. This will include a coverage table of demand estimation components by
validation sites/data.
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Appendix 2: Method To Restore Missing Employee Data

1. The First stage is a 2 way process on a DISTRICT LEVEL and also on a MLSOA LEVEL.

The process is similar at both levels, so it is only described once. The result is, as seen
in the diagram below, gives an average number of employees. In the case that we do not have
a sufficient number of companies with employee information the value of “-1”.

IF [Counting org]-[Counting null]>30 [ | YES | [Sum of empl] /
| ([Counting org]-[Counting null])
NO 'y

v

IF ([Counting org]-[Counting null]>[Counting org]/10)

- and ) . | YES
IF ([Counting org]-[Counting null]>2)

I
NO

'

\ 4

IF [Counting org]-[Counting null]>2 YES
and
IF ([Counting org] < 20)

|
NO
3

v
€ 1 2

Avrg_empl number: IIf([Counting org]-[Counting null]|>30,[ Sum of empl]/([Counting org]-
[Counting null]),IIf(([Counting org]-[ Counting null]>[Counting org]/10) And ([Counting
org]-[Counting null]>2),[Sum of empl]/([Counting org]-[Counting null]),IIf(([Counting org]-
[Counting null]>2),[Sum of empl]/([Counting org]-[Counting null]),-1)))

Description:

Counting org - Counting number of companies

Counting null - Counting number of companies with no information on employee number
Sum of empl - Sum of all employees in the SIC of the company

2. The Second stage is assigning the average employee number to the companies which are
missing this information.

This part of the procedure involves two steps. First step gives the companies with
missing information on employees a new number calculated at the level of MLSOA. In the
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second step, companies which are still missing information are given a new employee number
calculated at the level of DISTRICT

IF [EMPL NR]>0 [{ YES || [EMPL NR]
I
NO
IF (MLSOA Avrg empl number>=0) (— YES [—» assign
I MLSOA Avrg empl number>=0
NO
IF (COUNTY Avrg empl number>=0) — YES | assign
I District Avrg_empl number>=0
NO
[EMPL NR]
Description:
EMPL NR - Employee number
MLSOA_ Avrg empl number - Average number of employees for all the companies
with that SIC in the MLSOA
DISTRICTAvrg _empl number - Average number of employees for all the companies

with that SIC in the DISTRICT

EMPL NR:
IIf([EMPL_NR]>0,[EMPL NR]IIf(SIC HG15 avrg empl number!Avrg empl number>=0
,SIC_ HG15 avrg_empl number! Avrg empl number,[EMPL NR]))

EMPL NR:

If([EMPL_NR]>0,[EMPL NR]IIf(SIC avrg empl number!Avrg empl number>=0,SIC a
vrg_empl_number!Avrg_empl number,[EMPL NRY]))
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Appendix 3: Profile Set Descriptions

Bundesverband der Energie- und Wasserwirtschaft (BDEW)

Source formerly: Bundesverband der deutschen Gas- und Wasserwirtschaft (BGW
Demand Residential and Tertiary Gas

4 different residential profiles (detached house, apartments both old and
Profile set %)

11 different tertiary profiles (e.g. offices, retail, pubs & restaurants,

lodgings, banks and public buildings...) for unmetered customers
Data Hourly values x 2-3 day types x 52 weeks
Sampling
Access Published (in the document P2006/8). We have received written
Rights permission from the BDEW to use the method.

The method has been developed for gas consumption prediction in
Usage Germany and depends on daily outside temperature values. The
Comments transferability to UK gas consumption seems possible using UK climate

data.

Certification

The method has been published by the Technical University of Munich
(Prof. Wagner, Chair for Energy Economics and Applications Technology)
on behalf of the BGW and regularly improved since. The standardised
profile function was developed from 20 sets of 20 building samples across
Germany - the justification for the statistical approach is described in
(Hellwig, 2003).

The method is mandatory by law and is used for balancing the gas usage
of residential and tertiary customers. Today it is used by all known gas
providers who are obliged to publish the parameters that apply to their gas
grid.

A published study (Kema, 2009) on the prediction of gas loads on a
municipal energy utility gas grid, shows agreement to within a std dev of
10% in the winter.

The error of the estimation method, when used for the UK, will increase to
about 15% in the opinion of an expert user of the method from Thiga, the
biggest association of city energy utilities in Germany. However, in the
absence of a comparably detailed UK gas load prediction method, it is the
best method currently available to us.

Hellwig, M. (2003). Entwicklung und Anwendung parametrisierter Standard-Lastprofile.
Miinchen, Technische Universitidt Miinchen.

Kema Consulting GmbH, 2009, “Analyse von Auswirkungen der Anwendung géngiger

Standardlastprofile im Rahmen des Gas-Bilanzausgleichs”, April 2009.
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Source EDF Energy Demand Forecasting

Demand Residential Electric \

Profile Set Domestic _Unrestr_lcted (PC1) and Domestic Economy 7 (PC2) electric
consumption profiles

Data 48 x 2 hourly estimates of electric load x 365 days for each of 14 demand

Sampling regions (Grid Supply Points)

Access Data transmitted to EDF-EIFER. Permission has being granted to use

Rights within constraints identified in IP due diligence section of contract.

s This approach can be combined with DECC energy consumption data per

Corr?ments MLSOA to compute a calibrated residential electric demand profile at

MLSOA level.

Certification

Under the deregulation of the electricity supply market in 1998, it was
decided to balance the load from customers with below 100 kW peak
demand using load profiles. Of the 8 profile classes specified by the
Profiling Taskforce, two apply to residential demand: Profile Class 1 (PC1)
profiles domestic Unrestricted consumption and PC2 profiles domestic
Economy 7 consumption.

The sampling fraction for domestic customers is approximately 1 in 2000.
The validated samples across each Grid Supply Point (GSP) give a Group
Average Demand (GAD). This forms the basis of the profile classes and is
used for load prediction after applying regression analysis.

The difference between profiled half-hourly consumptions and the actual
metered readings is reviewed regularly and creates a GSP Group
Correction Factor.
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Source Bundesverband der Energie- und Wasserwirtschaft (BDEW)
Demand Tertiary Electric (and Residential Electric)
One Residential profile
8 Tertiary profiles (distinguished by business and operational hours) and 3
Profile Set Agricultural profiles
Several sub-profiles for (domestic) hot water storage, night storage
heating, and public lighting
Data 24 hourly estimates x 3 day types (working day, Saturday and Sunday) x 3
Sampling seasons (winter, summer, and transitional).
Access
Rights
Usage
Comments

Certification

The profiles have been established by the Technical University of Cottbus
on behalf of the BDEW (VDEW at that time). They are based on
measurements of 1200 sites from municipal utilities (e.g. Hamburg) and
the large regional utilities during the 1980s. Geographical differences were
not important

The method predicts consumption of electricity of residential and tertiary
customers. Today it is used as a basis for electricity transactions between
energy companies for unmetered customers.
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Source

EDF Energy CHP Operations

Demand Aggregated Thermal Demand \

Profile Set Thermal load of community heating project including several hundred
housing units, a school, leisure centre.

Data . 10 mins x 2 years

Sampling

Access

Rights

Comments

Certification

The aggregated demand contains over 500 flats dating from 1950 to 2005.
Non-residential demand includes a Leisure centre with swimming pool, a
school and a small nursery.

The project should, therefore, show some aggregation effects.

We have good access to the data and support from the operations
manager.
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Source EDF Energy Demand Forecasting
Demand Residential Gas

. End User Category (EUC) 1 profile
Profile Set (< 73.2 MWh p.a.; incorporates all residential)
Data Daily demand estimates (out of an annual load profile) x 365 days for each
Sampling of 13 demand zones
Access Data transmitted to EDF-EIFER. Permission has being granted to use
Rights within constraints identified in IP due diligence section of contract.
Usage The gas load profiles can be used to calibrate and cross-check the hourly
Comments prediction made for residential gas usage using the BDEW’s method.

Certification

Gas transporters are obliged, under the independent Gas Transporters’
Uniform Network Code (http://www.igt-unc.co.uk/), to prepare non-daily
metered demand estimations using profile services provided by xoserve
(http://www.xoserve.com/).

The EUC 1 profile is specifically modelled using a domestic subset of non-
daily metered supply points - this approach was reviewed by the Demand
Estimation Sub-Committee of the Uniform Network Code in June 2009 and
confirmed.

The number of samples for each of the 13 demand zones in the EUC 1
profile class ranged from 230 — 258 supply points (2956 across the UK) for
the 1 year period ending March 2009.

The performance of the profiling algorithms is compared with the actual
measured consumptions at the supply points and published. For the EUC
1 profile class, the uncompensated percentage error across all zones for
the 1 year period ending March 2009 was in the order of 5%.
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Source EDF Energy Sustainable Solutions

Demand Residential & Tertiary Thermal and Electric \
Thermal (Residential, Office, Retail, Hotel, School)

Profile Set Electric (Residential, Office, Retail, School)
Cooling (Office, Retail, Hotel)

——— . 24 hours x 2 day types x 3 characteristic seasons.

Sampling

Access

Rights

Usage There is already experience of using these profile sets in the project. Can

Comments be used to cross-check other profile sets.

Certification

There is no readily available case history for these profiles. They have
been developed by EDF Energy over a number of years and from different
sources for use in bidding for and designing commercial CHP and DH
projects.
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Appendix 4: Further Validation Data Sets

Potential Validation Sites (CHP plants / District Heating System) in the UK

_ Orange (data is requested) Red (data is not going to be received in the time available)

No | Name of project Location Responsible Description of customers Comments Status update Who Sources
authorities (09/2010)
Residential Tertiary
1 EDFE CHP OPS London EDFE 500 1 Swimming pool Daily data, 10 min Kevin EDFE
Residential 1 Primary school data (on thermal McKoen/
units 1 Nursery school load from 2003 to Syed
old (1960s) 1 Community hall 2009) Monjur
and new Murshed
(2005) Outside (EDF)
temperature
readings
2 Pimlico District | London CityWest 3,212 Homes School 2 CAT engines are in | Potentially Matthew http://www.cwh.org.uk/
Heating homes, 55 Commerecial operation interesting site Barton (ETI) | main.asp?page=494
Undertaking City of premises
(PDHU) Westminster (Community Hall, Official request has
Local shop, been sent by ETI
Offices) (on August)
3 Imperial College | London EDFE University buildings No residential block | Requested Energy Kevin EDFE
Management of McKoen/
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Imperial college

Syed

(on Sep) Monjur
Murshed
(EDF)
Finning CHP site | Rotherham Finning hospital Itis a CHP site Finning has the Stephen http://www.finning.co.u
data, but needs Neeson k/default.aspx
gas consumption, customer (Caterpillar)
generator load, approvals to use in
(electric power the project
produced), available
on hourly basis, no
metered heat data
(only plant
consumption data,
nothing on building)
CAT CHP sites Various Caterpillar Individual customer More information Request sent to Bryan A
location site: light industry on aggregated CHP Stephen/Bryan Silletti
site would be (Caterpillar)
helpful
Heathrow London EDFE Offices and No residential block | Requested (on Kevin EDFE
Airport warehouses Sep). McKoen/
the plant has now Syed
ceased operations Monjur
Murshed
(EDF)
Aberdeen CHP Aberdeen Aberdeen Heat | 850 8 public buildings Separate CHP Potentially Matthew http://ieu-
and Power Ltd. Residential projects (Stockethill, | interesting sites Barton (ETI) | Itd.com/aberdeen-heat-
(belongs to flats Hazlehead, Seaton — power-ltd
Aberdeen City flats, Seaton - public | David Clarke, CEO
Council) buildings) of ETI has send the
request to the
Aberdeen City
Council (on Aug)
Milton Keynes Milton UCL/National 160 Low Hourly energy data Contacted with Kevin http://eprints.ucl.ac.uk/
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Energy Park Keynes Energy energy homes in 1989,
Foundation Hourly room
temperature data in
29 dwellings
9 Sheffield Sheffield Veolia Flats (tower commercial and 140 Buildings
District Energy Environmental blocks) public sector currently connected
Network Services buildings, such as to the District
theatre, court, Energy Network
university, galleries
10 Energy Demand | Various EDF Energy, Smart meters in
Research location E.ON, Scottish around 18,000
Project (EDRP) Power and houses
Scottish and
Southern
Energy.
Managed by
Ofgem (on
behalf of the
Govt.)
11 Sheffield Heat Sheffield Sheffield Heat Castle Market (33 Individual sites are
and Power Ltd and Power permanent shops), serviced
(SHP) Ltd (SHP) Office complex,
Barclays Bank
12 Grosvenor Central Vital Energi 620 A gym, spa, juice bar | Vital also operates
Waterside London contemporary | and business centre DH schemes in other
Project residential cities
units Edinburgh,

Leicester, North
London, Belfast, etc
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Tadj Oresczyn,
Director of the UCL
Energy Institute.

It might consist of
some tertiary sites
need to check

Potentially
interesting sites
Need to contact
Request can be
made for a
particular site

Potentially
interesting sites
Out of scope of

MacroDE project as

the consortium
needs significant
time and resource

to collect the trial
data and to work
with it

Need to contact

Need to contact

McKoen/
Syed
Monjur
Murshed
(EDF)

2305/1/Microsoft Word
- CP-UCL-04-NCEUBO06-

conf-MKEP-Revisited-

Temperature-vl1.9-

04apr06-AJS.pdf

Matthew
Barton (ETI)

http://www.veoliaenviro
nmentalservices.co.uk/s
heffield/pages/district c

ustomers.asp

EDF/ETI

http://www.ofgem.gov.u
k/sustainability/edrp/Pa

ges/EDRP.aspx

ETI

ETI

http://www.vitalenergi.c
o.uk/CaseStudy Grosven
orWatersidel.html




13 Southampton’s | Southampto | Southampton Residential Several large office Several DH schemes
District Heating | n Geothermal properties buildings, a hospital, | exist in different
Scheme Heating a health clinic, a locations in

Company Ltd university, a large Southampton,
(SGHC) shopping centre, a Request can be sent
supermarket, several | for a particular
(Southampton hotels, BBC television | scheme
City Council and studios, one of
Utilicom) Europe's largest
shopping complexes,
and a swimming and
diving complex
14 Sheffield Road Barnsley Berneslai 166 flats, Wood fired
Homes, arranged in Communal Biomass
Barnsley three blocks Heating,
Metropolitan Social housing
Borough Council
(BMBC)

15 Llanwddyn Llanwddyn, Powys County 42 dwellings A school, a Wood-chip boiler,
District Heating | Wales Council and community centre Rural district
Scheme Powys Energy heating

Agency
Dulas
WoodEnergy
Ltd
16 Citigen London Citigen, owned Mainly commercial Besides electricity

by E.ON

and public buildings:
historic Guildhall, the
Barbican Arts Centre,
the Guildhall School
of Music and Drama,
the Museum of
London and London
Central Markets

and hot water,
chilled water is
supplied for air
conditioning
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Potentially
interesting sites

Need to contact

Need to contact

Need to contact

Need to contact

ETI

http://www.southampto

n.gov.uk/s-

environment/energy/Ge

othermal/

ETI

http://www.barnsley.go

v.uk/online

ETI

http://www.dulas.org.uk
/project/detail.asp?proje
ct=248&id=25

ETI

http://www.eon-
uk.com/generation/citig
en.aspx




(Smithfield) as well as
other major
commercial
customers

17

Nottingham
District Heating
Scheme

Nottingham

Enviroenergy
Limited, owned
by Nottingham
City Council

4600 homes

National Ice Arena,
the Broadmarsh and
Victoria shopping
centres, the Inland
Revenue offices
beside the canal,
Victoria Baths, the
Nottingham Town
Hall, Capital One’s UK
headquarters and
Nottingham Trent
University

A coal-fired power
station and a waste
incinerator.
Currently
undergoing a £1.9m
expansion

18

Lerwick District

Heating Scheme

Lerwick

Shetland Heat
Energy and
Power Ltd

301 Houses
owned by
council,
Hjaltland and
395 Privately
owned
houses

Sports centre with
swimming pool, 3
schools, the largest
pelagic fish factory in
Europe, a dairy (using
heat for
pasteurisation),
residential care
centres, a library, the
main hospital,
offices, retail
premises, museum,
hotels and guest
houses, public
buildings, council

Serving both
domestic and non
domestic properties
in Lerwick since
1998

19

St Pancras
Housing
Association
(SPH)

London

SPH

95 flats split
between two
blocks

a community centre,
10 commercial units,
SPH head office

Operated and
maintained by
housing associations
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Potentially ETI
interesting site

http://www.enviroenerg
y.co.uk/index2.htm

Potentially ETI
interesting site

http://www.sheap-
Itd.co.uk/

ETI

http://www.originhousin

g.org.uk/




References:
1. Combined Heat & Power Association: http://www.chpa.co.uk/case-studies 19.html
2. XergiLtd. & Xergi Services Ltd: http://www.xergi.com/en/chp/references/chp-for-district-heating.html
3. ETI MacroDE Deliverable 1.2: Design Practice Characterisation Report, Example Case Studies Appendix F.doc
4. DECC: Large scale CHP schemes in the United Kingdom, www.decc.gov.uk/assets/decc/statistics/source/electricity/dukes5 12.xls
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Appendix 5: Gas Consumption and Thermal Demand

Specific Building Demand
* Gas boiler efficiency (typical) taken as 80% (deliverable 1.1 project framework
document)

Aggregated Demand
* BRE domestic fact file: Energy Balance of the housing stock (2001)
1,365 PJ of delivered energy from gas for UK households
1,670 PJ of delivered energy for thermal uses
~1166 PJ of useful thermal demand (excluding useful gains)
-> national residential ratio of thermal demand : gas consumption = 0.85
This includes thermal system efficiency, proportion of gas thermal coverage, cooking ...

¢ Asimilar reasoning for the tertiary based on DECC Energy Consumption in the UK,
service sector data tables (2009):
8,400 thousand tonnes of oil equiv. (ttoe) final energy natural gas consumption
10,100 ttoe final energy for thermal uses
~ 7100 ttoe of useful thermal demand
-> national tertiary ratio of thermal demand : gas consumption = 0.84
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Appendix 6: Tertiary Profiles

Tertiary Gas profiles

contains all retail sectors, e.g. food, clothes, ...;
shops that are open only during daytime.

Financial and public services, NGOs, NPOs

Pubs, Bars and Restaurants; Serving food and
drinks

Lodging and Accommodation; offering a place
to sleep, not necessarily food and drinks
Bakeries open very early in the morning, esp.
for making new bread

Paper manufacturing and print houses

Garages/repair shops
have high hot water usage

Small private business that do not have offices
in separated buildings, only a separated room in
the house of the owner

Other services

Plant breeders
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Tertiary Elec profiles

Business with demand hours during the day and
much less during the night and at weekends, e.g.
offices, doctors, lawyers, repair shops, print
shops, schools, nurseries, administrations, banks
“light-oriented” business, e.g. gas stations, pubs,
leisure facilities, fitness centres, youth centres
Businesses that have even demand all day long,
e.g. waste water plants, communal facilities,
cooling warehouses, stores with high demand of
cooling devices, air conditioning or ventilation
Business with longer opening hours than 18:00
and partly working on Saturdays, e.g. barbers
Bakers’ shops have a high demand during the
night, usually starting at 3:00, while the demand
during the day is comparatively low (only bread
selling stores are classified above)

Main activities of the business are at the
weekend, e.g. clubs, carwashes, cinemas, sport
facilities

If no other profile fits

Small agricultural business with milking or
feeding times in the morning and evening (larger
business show demand during open hours as
business between 8:00 and 18:00)

Agricultural business and household in one
profile

General agricultural business, that is not
represented in one of the other two agricultural
profiles
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