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The deliverable addresses the problem of prediction of hot water usage and gas using online regression models. 

While there was no access to the quantity of hot water consumed over time by the inhabitant, the inference can be 

made using the temperature of the domestic hot water flow and the central heating flow. The algorithmic steps are 

provided in this report, and a full description of the algorithms is given in the referred papers.

Context:
The High Frequency Appliance Disaggregation Analysis (HFADA) project builds upon work undertaken in the Smart 

Systems and Heat (SSH) programme delivered by the Energy Systems Catapult for the ETI, to refine intelligence and 

gain detailed smart home energy data. The project analysed in depth data from five homes that trialed the SSH 

programme’s Home Energy Management System (HEMS) to identify which appliances are present within a building 

and when they are in operation. The main goal of the HFADA project was to detect human behaviour patterns in order 

to forecast the home energy needs of people in the future. In particular the project delivered a detailed set of data 

mining algorithms to help identify patterns of building occupancy and energy use within domestic homes from water, 

gas and electricity data.
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special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost 

business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the 
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1. History 

Date Issue Details of Change 
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Authors:  
          Waqas Jamil 
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2. Documents Referenced 

Ref Document Title 
 

1 Word document that 
describes the HEMS data. 

Data collection and data format –  
ELECTRIC, WATER and HEMS-V1 
MONITORING 

2 Word document that 
describes the HEMS V1 
Mongo data base structure. 

 
HEMS V1 Mongo Data Base Structure 

3 Deliverable 1 HFADA_Deliverable_Ver2 
4 Deliverable 2 HFADA_Deliverable2_V0 
5 Deliverable 3 HFADA_Deliverable3_V0 
5 Paper Competitive Normalised Least Squares 

Regression 
6 Paper Competitive Online Regularised Regression 

3. Glossary of Terms 

Ref Description 
 

OSLOG Online Shrinkage via Limit of Gibbs sampling 
ORR Online Ridge Regression 
ONLMS Online Normalised Least Mean Squares Regression 
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4. Executive Summary 

The document addresses the problem of prediction of hot water usage and gas using 
online regression models. While there is no access to the quantity of hot water 
consumed over time by the inhabitant, the inference can be made using the 
temperature of the domestic hot water flow (referred to as Temperature 1) and the 
central heating flow (referred to as Temperature 2). The proposed new prediction 
algorithms operate online in line with the requirements of deliverable 5. The algorithmic 
steps are provided in this report, but a full description of the algorithms is given in the 
referred papers. 
 
5. Introduction 

As mentioned in the previous reports, the size of the utility usage data is very huge. 
Algorithms processing such large data must observe time and memory restrictions [1, 
4]. Algorithms proposed so far have relied on the assumption that the process 
generating data is stochastic. On the contrary, in this report we propose new 
algorithms that make no assumption on the data generating process. Furthermore, 
these algorithms can infer and predict at the same time given the very nature of online 
learning. Our focus is on predicting gas and hot water temperature.  
 
Game theoretic probability models [8] in online learning theory have grown into a 
backbone in machine learning. In practice, online learning is relevant to various 
applications such as text analysis, computer vision, time series analysis, network 
modelling among others. The main challenge in online models is to have a guarantee 
on the performance that is not much worse than the best learning strategy in hindsight. 
Here theoretical guarantees, expressed in terms of bounds, indicate the worst-case 
performance under well-specified assumptions. The statistical models often make 
many passes over the data and converge to a solution that minimises the loss. Thus, 
it is important to have nice convergence properties for a particular algorithm. The 
proposed algorithms go a step beyond and propose an upper bound on the 
performance while making only one pass over the data. Hence, having a guarantee is 
a much stronger and desirable property than convergence. 
 
From the application perspective, the report looks at gas consumption and hot water 
temperature. The data offers the access to the quantity of gas consumed by the 
inhabitant, so predictive models can easily be fitted to the data at hand. Unfortunately, 
the access to hot water usage is not possible. The current report investigates the 
prediction of hot water temperature for which the data exists. Although we do not do 
any occupancy prediction, the idea of using hot temperature is to link it with the 
occupancy using some sort of thresholding.  
 
To develop the predictive analysis (online regression) models, we relied on the 
attributes/features displayed in Table 1 below, which summarises water flow, gas flow 
and various sensor measurements such as temperature of rooms, temperature 
radiators and temperature of water, relative humidity of room, the state of the radiators‘ 
valve and the state of the boiler firing switch.  
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Table 1: Data attributes  
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While there is no access to the quantity of hot water consumed over time by the 
inhabitant, the inference can be made using the temperature of the domestic water 
flow (referred to as Temperature 1) and the central heating flow (referred to 
Temperature 2). 
 
The organisation of this report is as follows. In the next section (Section 6) we present 
the pseudo-code of three online regression algorithms that we used to make prediction 
of gas and hot water temperature. Section 7 discusses the application of these 
algorithms in the context of HFADA. Section 8 concludes the report. 
 
6. Gas Consumption and Hot Water Temperature Prediction  

In the following, we briefly describe three novel algorithms used to predict gas 
consumption and hot water temperature. We approach the prediction problems stated 
as regression problems. All algorithms presented here are regression ones and 
operate online. These algorithms resemble the filtering models in signal processing. 
However, the goal is quite different. The goal in filtering is to filter the noise, while in 
online learning theory we are interested in solving the problem of prediction. An online 
regression algorithm receives an input at each step, predict the outcome and upon 
presentation of the actual outcome, the parameters (inference) of the model are 
adjusted. Notice, after processing each data we do not use it again. So, apart from the 
model we hold nothing in the memory, which makes online regression much more 
scalable than conventional statistical regression models.  
 

6.1 Online Shrinkage via Limit of Gibbs sampling (OSLOG) 
 

The pseudo-code of the algorithm is as follows: 
 

Initialise: � = 0�×�, � = 0�×�, 	 = 1�×�	, �	 > 	0  
FOR � = �, �, . .. 
        Read �� ∈ ℝ� 

        output ��	 =		′�� 
        �� = 	����(	�, . . . , 	�) 
        � = � + ����′ 
        � � =	!�� "�# + !�� �!��$

 �
!��  
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        Read %� ∈ ℝ 

        � = � + ��%� 
        	 = � �� 
END FOR 
 
If the data has significant outlier(s), then we suggest replacing  ��	 =		′�� by the 
following: 
 

��	 =
	′��

1 + ��′!�� "�# + !�� ∑ �'�'′�
'(� !�� $

 �
!�� ��

 

 
The above replacement of prediction leads to an algorithm that is more immune to 
overfitting in presence of outlier(s). For more details, please see [10].  
 

6.2 Competitive Online Iterated Ridge Regression (COIRR) 
 

The pseudo-code of the algorithm is as follows: 
 

Initialise: ) = �#�×�, � = 0�×�	, �	 > 	0  
FOR � = �, �, . .. 
        Read �� ∈ ℝ� 

        output ��	 =	�′) ��� 
        ) = ) + ����′ 
        Read %� ∈ ℝ 

        � = � + ��%� 
END FOR 
 
If the data has significant outlier(s), then ��	 =	�′) ��� is replaced with the following: 
 

��	 =
�′) ���

1 + ��′(�# + ∑ �'�'′�
'(� ) ���

 

 
The above replacement of prediction leads to an algorithm that is more immune to 
overfitting in presence of outlier(s). For more details, please see [10,11].  

6.3 Online Normalised Least Mean Squares Regression (ONLMS) 
 
The pseudo-code of the algorithm is as follows: 
 

Initialise: 	 = 0�×�	, −∞ < -	 < 	∞  
FOR � = �, �, . .. 
        Read �� ∈ ℝ� 

        output ��	 =		′�� 
        Read %� ∈ ℝ 

        Normalise loss . = /0	 10
23||50||6

6	
 

        	 = 	 + 	.�� 
END FOR 
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7.  Empirical study 

We used data collected from house number 24. The data has 150 attributes measured 
for 35 days every second. To make daily prediction we consider a moving average of 
each 86400 seconds (24 hours) as portrayed in the following pseudocode.  
 

Initialise: 7 = 0, 8 = 0�×�  
FOR � = �, �, . . . , 9:;<<  

         Read �� ∈ ℝ� 
         c = c+1  

         8 = 	8 + �� 
         =>�? = 	 @

A
  

END FOR 
 
The execution of such code results in 35 data points (for Gas, Temp 1 and Temp 2) 
which are then used to fit the regression models COIRR, ONLMSR and OSLOG. 
Specifically, the regression models are trained online and allowed to make sequential 
prediction of the average of the next 24 hours whenever a data point (average of 24 
hours) is presented. The simulation produced the results compiled in Table 2 using R2 

which measures the proportion of explained variation to the total variation of the output 
sequence (predicted values). R2 is very popular measure for evaluating regression 
models. R2 close to 0 indicates that the model does not explain the variability of the 
output (dependent variable) around its mean, while a value closer to 100% indicates 
that the model explains well the variability of the output around its mean. 
 

Table 2: R2 results of the three algorithms 

 

Algorithm \ R2 Gas Temp1 Temp2 
COIRR 0.79 0.37 0.61 
ONLMSR 0.52 0.06 0.08 
OSLOG 0.11 0.45 0.67 

 
To improve the predictive accuracy, we did feature selection in order to consider only 
potentially relevant features.  
 
We use the first 86400 data points to learn the features that affect gas and hot 
temperature. Popular methods, the forward and backward selection, are used. In 
forward selection we start from a null model and add features sequentially. After 
adding each feature, we compute a statistical measure such as Akaike Information 
Criterion (AIC) and check if AIC improves. Improvement means that the added feature 
is important and thus worth including it into the model. Backward selection follows the 
same procedure, but instead of starting from null model, we start from the full model 
(with all features) and remove features that contribute less to the model. For further 
details on forward and backward feature selection, please see [12]. On the 
experimented 2 days of the data, the following feature(s) are retained1:  
 

• Gas: 150, 147, 143, 141, 131, 123, 120, 118, 108, 53, 14  

                                                 
1
 The full numbering of features is provided in the Appendix. 



HFADA Bournemouth University 

 

 

• Temp 1: 142, 128, 118,117, 115, 88, 19  

• Temp 2: 150, 147, 132, 110, 108, 105, 67, 61, 52, 36, 35, 15, 2 
 
After performing model selection and tuning of the parameter � (see Table 3) on the 
first 86400 data points, we obtained the R2 results shown in Table 4.  

    

    Table 3: Values of the parameter a 

 

Algorithm \ a Gas Temp 1 Temp 2 

COIRR 6 0.9 0.7 

OSLOG 4 0.6 1.6 

ONLMSR 0.8 0.2 0.6 
                                                               

Table 4: Accuracy of the algorithms 
 

Algorithm \ R2 Gas Temp 1 Temp 2 

COIRR 0.93 0.34 0.49 
ONLMSR 0.78 0.03 0.95 
OSLOG 0.10 0.65 0.91 

 

Comparing these results against those portrayed in Table 2, it is clear that the selection 
of important features has had very good impact. 
 
Moreover, in order to appreciate more the quality of the fit of data, the accuracy of the 
prediction is illustrated in Figures 1-3. 

  

 
Figure 1: Gas prediction with COIRR, ONLMSR and OSLOG 
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Figure 1 shows that COIRR and ONLMSR perform very well on the task of predicting 
gas consumption, while OSLOG performs poorly. Notice, ONLMSR BC statistic is not 
as good as COIRR. This is because ONLMSR does not predict a certain observation 
well. After, further inspection it was discovered ONLMSR does not fit the outlier well, 
whereas COIRR can cope up better with the outlier. 

  

 
Figure 2: Temp 1 prediction with COIRR, ONLMSR and OSLOG 

 
All algorithms did not do well on the prediction of Temp 1 as shown in Figure 2. It 
seems that the input features do not correlate well with the response output Temp 1 
based on only the sample of data used.  OSLOG is the only algorithm that explains 
more than 50% of the variability.  
 
For the prediction of the hot water temperature for the central heating, Temp 2, Figure 
3 indicates that ONLMSR and OSLOG perform well. Here COIRR performs poorly. 
  
These results suggest that gas consumption and temperature of central heating can 
be predicted well using the proposed algorithms. The prediction of Temp1 is not as 
good as others. It is worth noting that OSLOG and ONLMSR are more likely to 
overestimate, while COIRR is likely to underestimate. 
 
Furthermore, the simulations suggest that in presence of a substantial outlier, OSLOG 
can perform poorly overall, ONLMSR most likely will not predict the substantial outlier 
well. On the other hand, COIRR is likely to handle the outlier. 
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Figure 3: Temp 2 prediction with COIRR, ONLMSR and OSLOG 

 

  
 
8.  Conclusion 

This report describes three novel online algorithms: Competitive Online Iterated Ridge 
Regression (COIRR), Online Normalised Least Mean Squares Regression (ONLMS) 
and Online Shrinkage via Limit of Gibbs sampling (OSLOG) to predict gas 
consumption and hot water usage (the hot temperature of the domestic heating and 
the hot temperature of the central heating flow). The proposed prediction algorithms 
show gas consumption and temperature of the central heating are quantities that can 
be predicted with a reasonable accuracy.  
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Appendix 

"X1","Time_stemps" 
"X2","Gas_data" 
"X3","Real power" 
"X4","Reactive power" 
"X5","RMS Spectrum power" 
"X6","RMS Spectrum power" 
"X7","RMS Spectrum power" 
"X8","RMS Spectrum power" 
"X9","RMS Spectrum power" 
"X10","RMS Spectrum power" 
"X11","RMS Spectrum power" 
"X12","RMS Spectrum power" 
"X13","RMS Spectrum power" 
"X14","RMS Spectrum power" 
"X15","RMS Spectrum power" 
"X16","RMS Spectrum power" 
"X17","RMS Spectrum power" 
"X18","RMS Spectrum power" 
"X19","RMS Spectrum power" 
"X20","RMS Spectrum power" 
"X21","RMS Spectrum power" 
"X22","RMS Spectrum power" 
"X23","RMS Spectrum power" 
"X24","RMS Spectrum power" 
"X25","RMS Spectrum power" 
"X26","RMS Spectrum power" 
"X27","RMS Spectrum power" 
"X28","RMS Spectrum power" 
"X29","RMS Spectrum power" 
"X30","RMS Spectrum power" 
"X31","RMS Spectrum power" 

"X51","RMS Spectrum power" 
"X52","RMS Spectrum power" 
"X53","RMS Spectrum power" 
"X54","RMS Spectrum power" 
"X55","RMS Spectrum power" 
"X56","RMS Spectrum power" 
"X57","RMS Spectrum power" 
"X58","RMS Spectrum power" 
"X59","RMS Spectrum power" 
"X60","RMS Spectrum power" 
"X61","RMS Spectrum power" 
"X62","RMS Spectrum power" 
"X63","RMS Spectrum power" 
"X64","RMS Spectrum power" 
"X65","RMS Spectrum power" 
"X66","RMS Spectrum power" 
"X67","RMS Spectrum power" 
"X68","RMS Spectrum power" 
"X69","RMS Spectrum power" 
"X70","RMS Spectrum power" 
"X71","RMS Spectrum power" 
"X72","RMS Spectrum power" 
"X73","RMS Spectrum power" 
"X74","RMS Spectrum power" 
"X75","RMS Spectrum power" 
"X76","RMS Spectrum power" 
"X77","RMS Spectrum power" 
"X78","RMS Spectrum power" 
"X79","RMS Spectrum power" 
"X80","RMS Spectrum power" 
"X81","RMS Spectrum power" 

"X101","RMS Spectrum power" 
"X102","RMS Spectrum power" 
"X103","RMS Spectrum power" 
"X104","RMS Spectrum power" 
"X105","Water input (quantity)" 
"X106","Room temperature" 
"X107","Room temperature" 
"X108","Room temperature" 
"X109","Room temperature" 
"X110","Room temperature" 
"X111","Room temperature" 
"X112","Room temperature" 
"X113","Room temperature" 
"X114","Room temperature" 
"X115","Room temperature" 
"X116","Room temperature" 
"X117","Hot Water 
temperature" 
"X118","Hot Water 
temperature" 
"X119","Hot Water 
temperature" 
"X120","Cold Water 
temperature" 
"X121","Radiator temperature" 
"X122","Radiator temperature" 
"X123","Radiator temperature" 
"X124","Radiator temperature" 
"X125","Radiator temperature" 
"X126","Radiator temperature" 
"X127","Radiator temperature" 



HFADA Bournemouth University 

 

 

"X32","RMS Spectrum power" 
"X33","RMS Spectrum power" 
"X34","RMS Spectrum power" 
"X35","RMS Spectrum power" 
"X36","RMS Spectrum power" 
"X37","RMS Spectrum power" 
"X38","RMS Spectrum power" 
"X39","RMS Spectrum power" 
"X40","RMS Spectrum power" 
"X41","RMS Spectrum power" 
"X42","RMS Spectrum power" 
"X43","RMS Spectrum power" 
"X44","RMS Spectrum power" 
"X45","RMS Spectrum power" 
"X46","RMS Spectrum power" 
"X47","RMS Spectrum power" 
"X48","RMS Spectrum power" 
"X49","RMS Spectrum power" 
"X50","RMS Spectrum power" 
 

"X82","RMS Spectrum power" 
"X83","RMS Spectrum power" 
"X84","RMS Spectrum power" 
"X85","RMS Spectrum power" 
"X86","RMS Spectrum power" 
"X87","RMS Spectrum power" 
"X88","RMS Spectrum power" 
"X89","RMS Spectrum power" 
"X90","RMS Spectrum power" 
"X91","RMS Spectrum power" 
"X92","RMS Spectrum power" 
"X93","RMS Spectrum power" 
"X94","RMS Spectrum power" 
"X95","RMS Spectrum power" 
"X96","RMS Spectrum power" 
"X97","RMS Spectrum power" 
"X98","RMS Spectrum power" 
"X99","RMS Spectrum power" 
"X100","RMS Spectrum power" 
 

"X128","Radiator temperature" 
"X129","Radiator temperature" 
"X130","Radiator temperature" 
"X131","Room humidity" 
"X132","Room humidity" 
"X133","Room humidity" 
"X134","Room humidity" 
"X135","Room humidity" 
"X136","Room humidity" 
"X137","Room humidity" 
"X138","Room humidity" 
"X139","Room humidity" 
"X140","Room humidity" 
"X141","Room humidity" 
"X142","Boiler" 
"X143","Valves" 
"X144","Valves" 
"X145","Valves" 
"X146","Valves" 
"X147","Valves" 
"X148","Valves" 
"X149","Valves" 
"X150","Valves" 
 

 


