

www.eti.co.uk

Heavy Duty Vehicles: Efficiency Opportunity, Options, Demonstration and Barriers

LCV 2016

Chris Thorne, CTO Heavy Duty Vehicles

© 2016 Energy Technologies Institute LLP

The information in this document is the property of Energy Technologies Institute LLP and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Energy Technologies Institute LLP.

This information is given in good faith based upon the latest information available to Energy Technologies Institute LLP, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Energy Technologies Institute LLP or any of its subsidiary or associated companies.

Introduction

- What is the Energy Technologies Institute and what are we trying to achieve with Heavy Duty Vehicles (HDV)
- What is the value of HDV carbon abatement (and therefore efficiency) to the UK energy system?
- What are the options to deliver carbon abatement?
- What are the current barriers preventing the uptake of carbon abating technologies?
- How might these barriers be addressed?

What is the ETI?

 The ETI is a public-private partnership between global energy and engineering companies and the UK Government

Delivering...

- Targeted development, demonstration and de-risking of new technologies for affordable and secure energy
- Shared risk

ETI members

ETI programme associate

HITACHI Inspire the Next

600

500

400

300

200

100

-100

Mt CO2/year

ESME – ETI's system design tool

integrating power, heat, transport and infrastructure providing national / regional system designs

International A&S

Transport Sector

Buildings Sector

Power Sector

Bio Credits

Industry Sector

2009 (Historic)

Net CO2 Emissions

HDVs and the UK Energy System

CCS (Carbon Capture and Storage)

Programme Objective

Develop new vehicle concepts

Develop new **technologies** to support concepts

Produce
demonstration
vehicles that are
30% more
efficient

Develop supply chain to enable meaningful market deployment

Enable substantial reduction in CO₂ emissions across sector

2012 - 2013

2012 - 2014

Outcomes

Components Vehicles

ETI Phase 1 Project Results

Through High Fidelity Simulation Confirmed Significant CO2 Reduction potential of the selected technology roadmap

John Deere 6150R

DAF XF105 Phase 3 Demo Machine

Alexander Dennis Enviro 300

Cat ® 966L MWL

Cat ® 320E HEX

Caterpillar: Non-Confidential

CATERPILLAR

Circa 28% benefit across the HDV fleet with feasible payback periods

ETI Heavy Duty Vehicle:

System Integrator project

Gas Well-to-Motion study & zero emission options

- Truck architecture (engine and transmission) that allow fuelling flexibility to manage the transition?
- Battery Electric + Mobile Charging?
- Hydrogen fuel cell and electric hybrid?
- Large battery electric hybrid with IC engine?

Market and Potential Barriers

Summary

- HDVs represent an opportunity to cost effectively decarbonise the UK energy system across a range of abatement and cost levels
- In the first instance, the ETI's efficiency projects have shown that a 30% reduction in fuel efficiency across the UK fleet can be achieved with reasonable payback periods
- Properly sourced and managed natural gas when coupled to a low methane slip powertrain can provide further CO₂ (equivalent) benefits
- As the UK transitions to a very low CO₂ energy system (circa 2040 to 2050), further 'carbon priced' HDV options could become attractive
- The marginal carbon price will be a function of the other technologies deployed in the energy system (e.g. CCS versus no CCS), but thresholds can be set using the ETI's ESME tool
- Barriers exist in the uptake of fuel efficiency technologies and new tools, techniques and policies are required to overcome them a subject for future work

Registered Office
Energy Technologies Institute
Holywell Building
Holywell Park
Loughborough
LE11 3UZ

For all general enquiries telephone the ETI on 01509 202020.

For more information about the ETI visit www.eti.co.uk

For the latest ETI news and announcements email info@eti.co.uk

The ETI can also be followed on Twitter @the_ETI